1,481 research outputs found
Analysis of the flavonoid component of bioactive New Zealand mānuka (Leptospermum scoparium) honey and the isolation, characterisation and synthesis of an unusual pyrrole
The flavonoid components of New Zealand mānuka (Leptospermum scoparium) honey have been quantified in a series of 31 honeys of varying non-peroxide antibacterial activity to clarify discrepancies between previous studies reported in the literature. Total flavonoid content was 1.16 mg/100 g honey. The principal flavonoids present were pinobanksin, pinocembrin, luteolin and chrysin and together these represented 61% of the total flavonoid content. 1, 2-formyl-5-(2-methoxyphenyl)-pyrrole, which was weakly correlated with the non-peroxide antibacterial activity, was isolated from the flavonoid fraction and separately synthesised. 1 did not display inhibitory activity against Staphylococcus aureus in vitro and thus the origin of the correlation, which is still unknown, is not a direct contribution
Radiation tails and boundary conditions for black hole evolutions
In numerical computations of Einstein's equations for black hole spacetimes,
it will be necessary to use approximate boundary conditions at a finite
distance from the holes. We point out here that ``tails,'' the inverse
power-law decrease of late-time fields, cannot be expected for such
computations. We present computational demonstrations and discussions of
features of late-time behavior in an evolution with a boundary condition.Comment: submitted to Phys. Rev.
Best Practices for Managing Cultural Taxation
The majority of faculty in higher education in the US identify racially as White. Cultural Taxation is a term from 1994 that refers to a common practice in which minoritized racial groups have more responsibilities expected from them than their White counterparts. Since occupational therapy (OT) education is a microcosm of higher education in the US, this affects Black, Indigenous, People of Color (BIPOC) faculty in occupational therapy as well. Recent Supreme Court rulings allow some states like Florida and Texas to eliminate their Diversity, Equity, and Inclusion (DEI) Departments in higher education institutions. With DEI efforts being cut or limited, the burden of cultural taxation is even more incumbent on faculty given that departmental DEI efforts are being cut or curtailed. It is imperative that BIPOC faculty receive some relief from the cultural tax burden. The following best practices for managing cultural taxation are the “3 R’s of Cultural Taxation Relief”: (a) Rebate, (b) Refund, and (c) Reward. OT faculty and students need creative strategies to promote DEI efforts to prevent stress, fatigue, and burnout. These brief best practices provide a start to ensure that faculty are supported
Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure
Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure
Recommended from our members
Lack of Association of Polymorphisms in Homocysteine Metabolism Genes with Pseudoexfoliation Syndrome and Glaucoma
Purpose: To evaluate genes involved in homocysteine metabolism as secondary risk factors for pseudoexfoliation syndrome (PXFS) and the associated glaucoma (PXFG). Methods: One hundred eighty-six unrelated patients with PXFS, including 140 patients with PXFG and 127 unrelated control subjects were recruited from the Massachusetts Eye and Ear Infirmary. All the patients and controls were Caucasian of European ancestry. Seventeen tag SNPs from 5 genes (methylenetetrahydrofolate reductase [MTHFR], methionine synthase [MTR], methionine synthase reductase [MTRR], methylenetetrahydrofolate dehydrogenase [MTHFD1], and cystathionine β-synthase [CBS]) were genotyped. Single-SNP association was analyzed using Fisher’s exact test (unconditional) or logistic regression after conditioning on the effects of age and three LOXL1 SNPs (rs1048661, rs3825942, and rs2165241). Interaction analysis was performed between the homocysteine and LOXL1 SNPs using logistic regression. Haplotype analysis and the set-based test were used to test for association of individual genes. Multiple comparisons were corrected using the Bonferroni method. Results: One SNP (rs8006686) in MTHFD1 showed a nominally significant association with PXFG (p=0.015, OR=2.23). None of the seventeen SNPs tested were significantly associated with PXFS or PXFG after correcting for multiple comparisons (Bonferroni corrected p>0.25). After controlling for the effects of age and three associated LOXL1 SNPs, none of the seventeen tested SNPs were associated with PXFS (p>0.12). No significant interaction effects on PXFS were identified between the homocysteine and LOXL1 SNPs (p>0.06). Haplotype analysis and the set-based test did not find significant association of individual genes with PXFS (p>0.23 and 0.20, respectively). Conclusions: Five genes that are critical components of the homocysteine metabolism pathway were evaluated as secondary factors for PXFS and PXFG. Our results suggest that these genes are not significant risk factors for the development of these conditions
Dominant Role of Oncogene Dosage and Absence of Tumor Suppressor Activity in Nras-Driven Hematopoietic Transformation
Biochemical properties of Ras oncoproteins and their transforming ability strongly support a dominant mechanism of action in tumorigenesis. However, genetic studies unexpectedly suggested that wild-type (WT) Ras exerts tumor suppressor activity. Expressing oncogenic Nras[superscript G12D] in the hematopoietic compartment of mice induces an aggressive myeloproliferative neoplasm that is exacerbated in homozygous mutant animals. Here, we show that increased Nras[superscript G12D] gene dosage, but not inactivation of WT Nras, underlies the aggressive in vivo behavior of Nras[superscript G12D over G12D] hematopoietic cells. Modulating Nras[superscript G12D] dosage had discrete effects on myeloid progenitor growth, signal transduction, and sensitivity to MAP-ERK kinase (MEK) inhibition. Furthermore, enforced WT N-Ras expression neither suppressed the growth of Nras-mutant cells nor inhibited myeloid transformation by exogenous Nras[superscript G12D]. Importantly, NRAS expression increased in human cancer cell lines with NRAS mutations. These data have therapeutic implications and support reconsidering the proposed tumor suppressor activity of WT Ras in other cancers.Pfizer Inc. (PD0325901)National Institutes of Health (U.S.) (Grant R37CA72614)National Institutes of Health (U.S.) (Grant P01CA40046)National Institutes of Health (U.S.) (Grant K08CA134649)Leukemia & Lymphoma Society of America (Specialized Center of Research Award LLS 7019-04))American Lebanese Syrian Associated Charitie
- …
