7,428 research outputs found
Temperature Effects on Development of Three Cereal Aphid Parasitoids (Hymenoptera: Aphidiidae)
Temperature is an important climatological variable that influences the biology and ecology of insects. Poor climatic adaptation can limit the effectiveness of parasitic insects in biological control. Two exotic parasites (Syrian Diaeretiella rapae (M\u27Intosh) and Argentinean Aphidius colemani Viereck) imported for biological control of the Russian wheat aphid, Diuraphis noxia (Mordvilko), and one native parasite (Diaeretiella rapae) were reared in growth chambers in three fluctuating temperature regimes with average daily temperatures of 12, 18, and 24°C. Estimates of temperature thresholds for immature development were 3.3, 3.5, and 2.8°C, for Oklahoman D. rapae, Syrian D. rapae, and A. colemani, respectively. Estimates of thermal require- ments for development from egg to adult were 297, 278, and 301 degree-days for the three parasitoids. Dry weights of adults reared in different fluctuating temperature regimes did not differ significantly among sexes, but adults from regimes with low average temperatures of 12 and 18°C had significantly greater weights than those reared in a regime with an average temperature of 24°C. Results suggest that developmental response to temperature will not limit the effectiveness of the exotic parasites in biological control
Isopoll Maps and an Analysis of the Distribution of the Modern Pollen Rain, Eastern and Central Northern Canada
At 39 sites in eastern and central northern Canada, multiple samples of surface moss and lichens have been analyzed for their pollen content. Although pollen from 20 to 30 taxa were identified in the samples from each site, 8 pollen types (Alnus, Betula, Picea. Pinus, Salix, Gramineae, Cyperaceae and Ericaceae) usually comprise 90 to 100% of the pollen rain. We present isopoll maps of these taxa based on mean percentages of multiple samples from the 39 sites. The data are further analyzed by a number of statistical methods to determine whether there are specific pollen assemblages within this region and to what extent present day climatic parameters and floristic/vegetation zones correlate with pollen counts. Cluster analysis on raw data and on principal component scores yields six distinct pollen assemblages which are further examined by discriminant analysis. Pollen concentration maps for eastern Canada are also presented here and used as an aid in interpreting the percentage data.L'analyse pollinique d'un grand nombre d'échantillons de mousses et de lichens prélevés à la surface de 39 sites du centre et de l'est du Nord canadien a été faite. Même si on a pu identifier de 20 à 30 taxons dans les échantillons provenant de chacun des sites, 8 types polliniques (Alnus, Betula, Picea, Pinus, Salix, Gramineae, Cyperaceae, Ericaceae) se partagent habituellement entre 90 et 100% de la pluie pollinique. On présente ici les cartes isopolles de ces taxons, basées sur les pourcentages moyens des nombreux échantillons prélevés sur les 39 sites. L'analyse statistique des données qui a été faite avait pour but de dégager des assemblages polliniques distincts et de déterminer si les paramètres climatiques actuels ainsi que les régions floristiques pouvaient être mis en corrélation avec les sommes polliniques. Une analyse de grappes et de scores des composantes principales et des données brutes a permis de dégager 6 assemblages polliniques distincts qui ont fait l'objet d'une analyse discriminante. Les cartes de concentration pollinique de l'est du Canada, qui ont été dressées, ont servi à l'interprétation des données en pourcentage
Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory
The equation of state (EOS) of finite nuclei is constructed in the
relativistic Thomas-Fermi theory using the non-linear
model. The caloric curves are calculated by confining the nuclei in the
freeze-out volume taken to be a sphere of size about 4 to 8 times the normal
nuclear volume. The results obtained from the relativistic theory are not
significantly different from those obtained earlier in a non-relativistic
framework. The nature of the EOS and the peaked structure of the specific heat
obtained from the caloric curves show clear signals of a liquid-gas phase
transition in finite nuclei. The temperature evolution of the Gibbs potential
and the entropy at constant pressure indicate that the characteristics of the
transition are not too different from the first-order one.Comment: RevTex file(19 pages) and 12 psfiles for fugures. Physical Review C
(in Press
High-contrast imager for Complex Aperture Telescopes (HiCAT): 1. Testbed design
Searching for nearby habitable worlds with direct imaging and spectroscopy
will require a telescope large enough to provide angular resolution and
sensitivity to planets around a significant sample of stars. Segmented
telescopes are a compelling option to obtain such large apertures. However,
these telescope designs have a complex geometry (central obstruction, support
structures, segmentation) that makes high-contrast imaging more challenging. We
are developing a new high-contrast imaging testbed at STScI to provide an
integrated solution for wavefront control and starlight suppression on complex
aperture geometries. We present our approach for the testbed optical design,
which defines the surface requirements for each mirror to minimize the
amplitude-induced errors from the propagation of out-of-pupil surfaces. Our
approach guarantees that the testbed will not be limited by these Fresnel
propagation effects, but only by the aperture geometry. This approach involves
iterations between classical ray-tracing optical design optimization, and
end-to-end Fresnel propagation with wavefront control (e.g. Electric Field
Conjugation / Stroke Minimization). The construction of the testbed is planned
to start in late Fall 2013.Comment: Proc. of the SPIE 8864, 10 pages, 3 figures, Techniques and
Instrumentation for Detection of Exoplanets V
Recommended from our members
Reactive nitrogen in Asian continental outflow over the western Pacific: Results from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission
We present here results for reactive nitrogen species measured aboard the NASA DC-8 aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The large-scale distributions total reactive nitrogen (NOy,sum = NO + NO2 + HNO3 + PAN + C1–C5alkyl nitrates) and O3 and CO were better defined in the boundary layer with significant degradation of the relationships as altitude increased. Typically, NOy,sum was enhanced over background levels of ∼260 pptv by 20-to-30-fold. The ratio C2H2/CO had values of 1–4 at altitudes up to 10 km and as far eastward as 150°E, implying significant vertical mixing of air parcels followed by rapid advection across the Pacific. Analysis air parcels originating from five principal Asian source regions showed that HNO3 and PAN dominated NOy,sum. Correlations of NOy,sum with C2Cl4 (urban tracer) were not well defined in any of the source regions, and they were only slightly better with CH3Cl (biomass tracer). Air parcels over the western Pacific contained a complex mixture of emission sources that are not easily resolvable as shown by analysis of the Shanghai mega-city plume. It contained an intricate mixture of pollution emissions and exhibited the highest mixing ratios of NOy,sum species observed during TRACE-P. Comparison of tropospheric chemistry between the earlier PEM-West B mission and the recent TRACE-P data showed that in the boundary layer significant increases in the mixing ratios of NOy,sum species have occurred, but the middle and upper troposphere seems to have been affected minimally by increasing emissions on the Asian continent over the last 7 years
Atomistic modeling of amorphous silicon carbide: An approximate first-principles study in constrained solution space
Localized basis ab initio molecular dynamics simulation within the density
functional framework has been used to generate realistic configurations of
amorphous silicon carbide (a-SiC). Our approach consists of constructing a set
of smart initial configurations that conform essential geometrical and
structural aspects of the materials obtained from experimental data, which is
subsequently driven via first-principles force-field to obtain the best
solution in a reduced solution space. A combination of a priori information
(primarily structural and topological) along with the ab-initio optimization of
the total energy makes it possible to model large system size (1000 atoms)
without compromising the quantum mechanical accuracy of the force-field to
describe the complex bonding chemistry of Si and C. The structural, electronic
and the vibrational properties of the models have been studied and compared to
existing theoretical models and available data from experiments. We demonstrate
that the approach is capable of producing large, realistic configurations of
a-SiC from first-principles simulation that display excellent structural and
electronic properties of a-SiC. Our study reveals the presence of predominant
short-range order in the material originating from heteronuclear Si-C bonds
with coordination defect concentration as small as 5% and the chemical disorder
parameter of about 8%.Comment: 16 pages, 7 figure
A Toolbox for Spatiotemporal Analysis of Voltage-Sensitive Dye Imaging Data in Brain Slices
Voltage-sensitive dye imaging (VSDI) can simultaneously monitor the spatiotemporal electrical dynamics of thousands of neurons and is often used to identify functional differences in models of neurological disease. While the chief advantage of VSDI is the ability to record spatiotemporal activity, there are no tools available to visualize and statistically compare activity across the full spatiotemporal range of the VSDI dataset. Investigators commonly analyze only a subset of the data, and a majority of the dataset is routinely excluded from analysis. We have developed a software toolbox that simplifies visual inspection of VSDI data, and permits unaided statistical comparison across spatial and temporal dimensions. First, the three-dimensional VSDI dataset (x,y,time) is geometrically transformed into a two-dimensional spatiotemporal map of activity. Second, statistical comparison between groups is performed using a non-parametric permutation test. The result is a 2D map of all significant differences in both space and time. Here, we used the toolbox to identify functional differences in activity in VSDI data from acute hippocampal slices obtained from epileptic Arx conditional knock-out and control mice. Maps of spatiotemporal activity were produced and analyzed to identify differences in the activity evoked by stimulation of each of two axonal inputs to the hippocampus: the perforant pathway and the temporoammonic pathway. In mutant hippocampal slices, the toolbox identified a widespread decrease in spatiotemporal activity evoked by the temporoammonic pathway. No significant differences were observed in the activity evoked by the perforant pathway. The VSDI toolbox permitted us to visualize and statistically compare activity across the spatiotemporal scope of the VSDI dataset. Sampling error was minimized because the representation of the data is standardized by the toolbox. Statistical comparisons were conducted quickly, across the spatiotemporal scope of the data, without a priori knowledge of the character of the responses or the likely differences between them
Interventricular septal angle can be used to predict which patients have combined postcapillary or precapillary pulmonary hypertension in left heart disease
Radio Continuum and Recombination Line Study of UC HII Regions with Extended Envelopes
We have carried out 21 cm radio continuum observations of 16 UC HII regions
using the VLA (D-array) in search of associated extended emission. We have also
observed H76 recombination line towards all the sources and
He76 line at the positions with strong H76 line emission. The
UC HII regions have simple morphologies and large (>10) ratios of single-dish
to VLA fluxes. Extended emission was detected towards all the sources. The
extended emission consists of one to several compact components and a diffuse
extended envelope. All the UC HII regions but two are located in the compact
components, where the UC HII regions always correspond to their peaks. The
compact components with UC HII regions are usually smaller and denser than
those without UC HII regions. Our recombination line observations indicate that
the ultracompact, compact, and extended components are physically associated.
The UC HII regions and their associated compact components are likely to be
ionized by the same sources on the basis of the morphological relations
mentioned above. This suggests that almost all of the observed UC HII regions
are not `real' UC HII regions and that their actual ages are much greater than
their dynamical age (<10000 yr). We find that most of simple UC HII regions
previously known have large ratios of single-dish to VLA fluxes, similar to our
sources. Therefore, the `age problem' of UC HII regions does not seem to be as
serious as earlier studies argued. We present a simple model that explains
extended emission around UC HII regions. Some individual sources are discussed.Comment: 29 pages, 28 postscript figures, Accepted for publication in Ap
- …
