14,861 research outputs found

    Smarter Programming of the Female Condom: Increasing Its Impact on HIV Prevention in the Developing World

    Get PDF
    The purpose of this study was to investigate the relative value of the female condom for HIV prevention within heterosexual relationships in the developing world. In the last ten years, the world has witnessed both historic financial commitments to HIV/AIDS and new prevention options, including biomedical prevention research, male circumcision, and a dramatic scale-up of voluntary counseling and testing. At the same time, where HIV remains at epidemic levels in many countries, there has been a growing commitment to treatment access alongside prevention programs. However, portions of populations, particularly youth and women, remain highly vulnerable to HIV infection. Accordingly, the global health community can benefit from a better understanding of how existing prevention options should be effectively and efficiently delivered to reduce HIV in the developing world. This report provides guidance for the global health community for considering how the female condom fits within the set of prevention interventions currently available

    Fast computation of effective diffusivities using a semi-analytical solution of the homogenization boundary value problem for block locally-isotropic heterogeneous media

    Full text link
    Direct numerical simulation of diffusion through heterogeneous media can be difficult due to the computational cost of resolving fine-scale heterogeneities. One method to overcome this difficulty is to homogenize the model by replacing the spatially-varying fine-scale diffusivity with an effective diffusivity calculated from the solution of an appropriate boundary value problem. In this paper, we present a new semi-analytical method for solving this boundary value problem and computing the effective diffusivity for pixellated, locally-isotropic, heterogeneous media. We compare our new solution method to a standard finite volume method and show that equivalent accuracy can be achieved in less computational time for several standard test cases. We also demonstrate how the new solution method can be applied to complex heterogeneous geometries represented by a grid of blocks. These results indicate that our new semi-analytical method has the potential to significantly speed up simulations of diffusion in heterogeneous media.Comment: 29 pages, 4 figures, 5 table

    Protoplanetary Disk Evolution: Singles vs. Binaries

    Full text link
    Based on a large number of observations carried out in the last decade it appears that the fraction of stars with protoplanetary disks declines steadily between ~1 Myr and ~10 Myr. We do, however, know that the multiplicity fraction of star-forming regions can be as high as >50% and that multiples have reduced disk lifetimes on average. As a consequence, the observed roughly exponential disk decay can be fully attributed neither to single nor binary stars and its functional form may need revision. Observational evidence for a non-exponential decay has been provided by Kraus et al. (2012), who statistically correct previous disk frequency measurements for the presence of binaries and find agreement with models that feature a constantly high disk fraction up to ~3 Myr, followed by a rapid (\lesssim2 Myr) decline. We present results from our high angular resolution observational program to study the fraction of protoplanetary disks of single and binary stars separately. We find that disk evolution timescales of stars bound in close binaries (<100 AU) are significantly reduced compared to wider binaries. The frequencies of accretors among single stars and wide binaries appear indistinguishable, and are found to be lower than predicted from planet forming disk models governed by viscous evolution and photoevaporation.Comment: 4 pages, 1 figure. To appear in the proceedings of IAU Symposium 314 "Young Stars & Planets Near the Sun", Atlanta, GA, May 11-15, 201

    Semi-analytical solution of multilayer diffusion problems with time-varying boundary conditions and general interface conditions

    Full text link
    We develop a new semi-analytical method for solving multilayer diffusion problems with time-varying external boundary conditions and general internal boundary conditions at the interfaces between adjacent layers. The convergence rate of the semi-analytical method, relative to the number of eigenvalues, is investigated and the effect of varying the interface conditions on the solution behaviour is explored. Numerical experiments demonstrate that solutions can be computed using the new semi-analytical method that are more accurate and more efficient than the unified transform method of Sheils [Appl. Math. Model., 46:450-464, 2017]. Furthermore, unlike classical analytical solutions and the unified transform method, only the new semi-analytical method is able to correctly treat problems with both time-varying external boundary conditions and a large number of layers. The paper is concluded by replicating solutions to several important industrial, environmental and biological applications previously reported in the literature, demonstrating the wide applicability of the work.Comment: 24 pages, 8 figures, accepted version of paper published in Applied Mathematics and Computatio

    Pattern formation during de novo assembly of the Arabidopsis shoot meristem

    Get PDF
    Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. We characterize early patterning during de novo development of the Arabidopsis shoot meristem using fluorescent reporters of known gene and protein activities required for shoot meristem development and maintenance. We find that a small number of progenitor cells initiate development of new shoot meristems through stereotypical stages of reporter expression and activity of CUP-SHAPED COTYLEDON 2 (CUC2), WUSCHEL (WUS), PIN-FORMED 1 (PIN1), SHOOT-MERISTEMLESS (STM), FILAMENTOUS FLOWER (FIL, also known as AFO), REVOLUTA (REV), ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) and CLAVATA 3 (CLV3). Furthermore, we demonstrate a functional requirement for WUS activity during de novo shoot meristem initiation. We propose that de novo shoot meristem induction is an easily accessible system for the study of patterning and self-organization in the well-studied model organism Arabidopsis
    corecore