36,480 research outputs found
Phillips CO-oxidation catalyts for long-lived CO2 lasers: Activity and initial characterization studies
Four different catalysts have been developed specifically for use in sealed carbon dioxide lasers. The catalysts have been designed to be low dusting, stable to shock and vibration, have high activity at low temperatures and have long active lifetimes. Measured global CO oxidation rates range from 1.4 to 2.2 cc CO converted per minute per gram of catalyst at ambient temperature. The catalysts also retain substantial activity at temperatures as low as -35 C. The Phillips laser catalysts are prepared in a variety of different shapes to meet the different pressure drop and gas flow profiles present in the many different styles of lasers. Each catalyst has been tested in sealed TEA lasers and has been shown to substantially increase the sealed life of the laser. Activity measurements made on the precious metal catalysts which were prepared with and without activity promoters showed that the promoter materials increase catalyst CO oxidation activity at least an order of magnitude at ambient temperature. Initial studies using H2 and CO chemisorption, X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS) have shown that the activity promoters do not significantly affect the precious metal crystallite size or the electronic structure around the precious metal. In addition, the formation or lack of formation of solid solutions between the precious metal and promoters has also been shown not to affect the activity of the promoted catalyst
The Lipkin Model in the su(M+1)-Algebra for Many-Fermion System and its Counterpart in the Schwinger Boson Representation
Following the Schwinger boson representation for the su(M+1)- and the
su(N,1)-algebra presented by two of the present authors (J. da P. and M. Y.)
and Kuriyama, a possible counterpart of the Lipkin model in the su(M+1)-algebra
formulated in the fermion space is presented. The free vacuum, which plays a
fundamental role in the conventional treatment of the Lipkin model, is
generalized in a quite natural way, and further, the excited state generating
operators such as the particle-hole pairs are also given in a natural scheme.
As concrete examples, the cases of the su(2)-, su(3)- and the su(4)-algebra are
discussed. Especially, the case of the su(4)-algebra is investigated in detail
in relation to the nucleon pairing correlations and the high temperature
superconductivity.Comment: 22 pages, 1 figure, using PTPTeX styl
Rotor performance characteristics from an aeroacoustic helicopter wind-tunnel test program
An investigation of helicopter rotor noise at model scale was conducted in the Langley 4 by 7 meter tunnel. The program described was the first of a planned three-phase project whose purpose was to examine the characteristic noise mechanism involved in main rotor/tail rotor interaction noise. This first phase was conducted with a main rotor only, in order to identify the characteristic noise generated by only the main rotor. The aerodynamic operating conditions of the rotor system were defined during the test. The acoustic data were properly referenced
Thermal Model Analysis of Particle Ratios at GSI Ni-Ni Experiments Using Exact Strangeness Conservation
The production of hadrons in Ni-Ni at the GSI is considered in a hadronic gas
model with chemical equilibrium. Special attention is given to the abundance of
strange particles which are treated using the exact conservation of
strangeness. It is found that all the data can be described using a temperature
T = 70 pm 10 MeV and a baryon chemical potential mu_B = 720 pm 20 MeV.Comment: Revtex, 7 pages, 3 figures in postscript forma
Modelling the atomic structure of very high-density amorphous ice
The structure of very high-density amorphous (VHDA) ice has been modelled by
positionally disordering three crystalline phases, namely ice IV, VI and XII.
These phases were chosen because only they are stable or metastable in the
region of the ice phase diagram where VHDA ice is formed, and their densities
are comparable to that of VHDA ice. An excellent fit to the medium range of the
experimentally observed pair-correlation function g(r) of VHDA ice was obtained
by introducing disorder into the positions of the H2O molecules, as well as
small amounts of molecular rotational disorder, disorder in the O--H bond
lengths and disorder in the H--O--H bond angles. The low-k behaviour of the
experimental structure factor, S(k), is also very well reproduced by this
disordered-crystal model. The fraction of each phase present in the best-fit
disordered model is very close to that observed in the probable crystallization
products of VHDA ice. In particular, only negligible amounts of ice IV are
predicted, in accordance with experimental observation.Comment: 4 pages, 3 figures, 1 table, v2: changes made in response to
referees' comments, the justification for using certain ice phases is
improved, and ice IV is now disordered as wel
A Descriptive Study of the Population Dynamics of Adult \u3ci\u3eDiabrotica Virgifera Virgifera\u3c/i\u3e (Coleoptera: Chrysomelidae) in Artificially Infested Corn Fields
The influence of corn plant phenology on the dynamics of adult western corn rootworm, Diabrotica virgifera virgifera, populations was studied during 1988 and 1989 in com fields artificially infested with eggs. Fifty percent of adult emergence from the soil occurred by day 194 in 1988 and day 203 in 1989. In both years, adult emergence was synchronized with corn flowering, eggs were recovered in soil samples approximately four days after reproductive females were first observed in the population, and oviposition was essentially complete about 25 days after it began. The number of reproductive female beetle-days accumulating per m2 was similar in both years. Approximately two times as many eggs were laid in 1988 (1239 eggs 1m2) as in 1989 (590 eggs 1m2). The difference in egg density may have been caused by differences among years in the temporal synchrony of reproductive beetles with flowering corn. Daily survival rates of adults were high while corn was flowering; exhibited a gradual decline during grain filling; and decreased rapidly during the grain drying stage
Symmetry of k·p Hamiltonian in pyramidal InAs/GaAs quantum dots: Application to the calculation of electronic structure
A method for the calculation of the electronic structure of pyramidal self-assembled InAs/GaAs quantum dots is presented. The method is based on exploiting the C-4 symmetry of the 8-band k·p Hamiltonian with the strain taken into account via the continuum mechanical model. The operators representing symmetry group elements were represented in the plane wave basis and the group projectors were used to find the symmetry adapted basis in which the corresponding Hamiltonian matrix is block diagonal with four blocks of approximately equal size. The quantum number of total quasiangular momentum is introduced and the states are classified according to its value. Selection rules for interaction with electromagnetic field in the dipole approximation are derived. The method was applied to calculate electron and hole quasibound states in a periodic array of vertically stacked pyramidal self-assembled InAs/GaAs quantum dots for different values of the distance between the dots and external axial magnetic field. As the distance between the dots in an array is varied, an interesting effect of simultaneous change of ground hole state symmetry, type, and the sign of miniband effective mass is predicted. This effect is explained in terms of the change of biaxial strain. It is also found that the magnetic field splitting of Kramer's double degenerate states is most prominent for the first and second excited state in the conduction band and that the magnetic field can both separate otherwise overlapping minibands and concatenate otherwise nonoverlapping minibands
Triclocarban Influences Antibiotic Resistance and Alters Anaerobic Digester Microbial Community Structure
Triclocarban (TCC) is one of the most abundant organic micropollutants detected in biosolids. Lab-scale anaerobic digesters were amended with TCC at concentrations ranging from the background concentration of seed biosolids (30 mg/kg) to toxic concentrations of 850 mg/kg to determine the effect on methane production, relative abundance of antibiotic resistance genes, and microbial community structure. Additionally, the TCC addition rate was varied to determine the impacts of acclimation time. At environmentally relevant TCC concentrations (max detect = 440 mg/kg), digesters maintained function. Digesters receiving 450 mg/kg of TCC maintained function under gradual TCC addition, but volatile fatty acid concentrations increased, pH decreased, and methane production ceased when immediately fed this concentration. The concentrations of the mexB gene (encoding for a multidrug efflux pump) were higher with all concentrations of TCC compared to a control, but higher TCC concentrations did not correlate with increased mexB abundance. The relative abundance of the gene tet(L) was greater in the digesters that no longer produced methane, and no effect on the relative abundance of the class 1 integron integrase encoding gene (intI1) was observed. Illumina sequencing revealed substantial community shifts in digesters that functionally failed from increased levels of TCC. More subtle, yet significant, community shifts were observed in digesters amended with TCC levels that did not inhibit function. This research demonstrates that TCC can select for a multidrug resistance encoding gene in mixed community anaerobic environments, and this selection occurs at concentrations (30 mg/kg) that can be found in full-scale anaerobic digesters (U.S. median concentration = 22 mg/kg, mean = 39 mg/kg)
- …
