2,432 research outputs found
The Sensitivity of Language Models and Humans to Winograd Schema Perturbations
Large-scale pretrained language models are the major driving force behind
recent improvements in performance on the Winograd Schema Challenge, a widely
employed test of common sense reasoning ability. We show, however, with a new
diagnostic dataset, that these models are sensitive to linguistic perturbations
of the Winograd examples that minimally affect human understanding. Our results
highlight interesting differences between humans and language models: language
models are more sensitive to number or gender alternations and synonym
replacements than humans, and humans are more stable and consistent in their
predictions, maintain a much higher absolute performance, and perform better on
non-associative instances than associative ones. Overall, humans are correct
more often than out-of-the-box models, and the models are sometimes right for
the wrong reasons. Finally, we show that fine-tuning on a large, task-specific
dataset can offer a solution to these issues.Comment: ACL 202
Limited antigenic diversity of Plasmodium falciparum apical membrane antigen 1 supports the development of effective multi-allele vaccines
BackgroundPolymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies.MethodsWe aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence.ResultsWe found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis.ConclusionsAntigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines
The metabolic enzyme AdhE controls the virulence of <i>Escherichia coli</i> O157:H7
Classical studies have focused on the role that individual regulators play in controlling virulence gene expression. An emerging theme, however, is that bacterial metabolism also plays a key role in this process. Our previous work identified a series of proteins that were implicated in the regulation of virulence. One of these proteins was AdhE, a bi-functional acetaldehyde-CoA dehydrogenase and alcohol dehydrogenase. Deletion of its gene (adhE) resulted in elevated levels of extracellular acetate and a stark pleiotropic phenotype: strong suppression of the Type Three Secretion System (T3SS) and overexpression of non-functional flagella. Correspondingly, the adhE mutant bound poorly to host cells and was unable to swim. Furthermore, the mutant was significantly less virulent than its parent when tested in vivo, which supports the hypothesis that attachment and motility are central to the colonization process. The molecular basis by which AdhE affects virulence gene regulation was found to be multifactorial, involving acetate-stimulated transcription of flagella expression and post-transcriptional regulation of the T3SS through Hfq. Our study reveals fascinating insights into the links between bacterial physiology, the expression of virulence genes, and the underlying molecular mechanism mechanisms by which these processes are regulated
Does the level of asepsis impact the success of surgically implanting tags in Atlantic salmon?
Numerical Calculations of the B1g Raman Spectrum of the Two-Dimensional Heisenberg Model
The B1g Raman spectrum of the two-dimensional S=1/2 Heisenberg model is
discussed within Loudon-Fleury theory at both zero and finite temperature. The
exact T=0 spectrum for lattices with up to 6*6 sites is computed using Lanczos
exact diagonalization. A quantum Monte Carlo (QMC) method is used to calculate
the corresponding imaginary-time correlation function and its first two
derivatives for lattices with up to 16*16 spins. The imaginary-time data is
continued to real frequency using the maximum-entropy method, as well as a fit
based on spinwave theory. The numerical results are compared with spinwave
calculations for finite lattices. There is a surprisingly large change in the
exact spectrum going from 4*4 to 6*6 sites. In the former case there is a
single dominant two-magnon peak at frequency w/J appr. 3.0, whereas in the
latter case there are two approximately equal-sized peaks at w/J appr. 2.7 and
3.9. This is in good qualitative agreement with the spinwave calculations
including two-magnon processes on the same lattices. Both the Lanczos and the
QMC results indicate that the actual infinite-size two-magnon profile is
broader than the narrow peak obtained in spinwave theory, but the positions of
the maxima agree to within a few percent. The higher-order contributions
present in the numerical results are merged with the two-magnon profile and
extend up to frequencies w/J appr. 7. The first three frequency cumulants of
the spectrum are in excellent agreement with results previously obtained from a
series expansion around the Ising limit. Typical experimental B1g$ spectra for
La2CuO4 are only slightly broader than what we obtain here. The exchange
constant extracted from the peak position is J appr. 1400K, in good agreement
with values obtained from neutron scattering and NMR experiments.Comment: 15 pages, Revtex, 13 PostScript figure
Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe
The Extragalactic Background Light (EBL) includes photons with wavelengths
from ultraviolet to infrared, which are effective at attenuating gamma rays
with energy above ~10 GeV during propagation from sources at cosmological
distances. This results in a redshift- and energy-dependent attenuation of the
gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts
(GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray
blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using
photons above 10 GeV collected by Fermi over more than one year of observations
for these sources, we investigate the effect of gamma-ray flux attenuation by
the EBL. We place upper limits on the gamma-ray opacity of the Universe at
various energies and redshifts, and compare this with predictions from
well-known EBL models. We find that an EBL intensity in the optical-ultraviolet
wavelengths as great as predicted by the "baseline" model of Stecker et al.
(2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication
in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A.
Reimer, L.C. Reye
RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord
ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients
A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope
Globular clusters with their large populations of millisecond pulsars (MSPs)
are believed to be potential emitters of high-energy gamma-ray emission. Our
goal is to constrain the millisecond pulsar populations in globular clusters
from analysis of gamma-ray observations. We use 546 days of continuous
sky-survey observations obtained with the Large Area Telescope aboard the Fermi
Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular
clusters. Steady point-like high-energy gamma-ray emission has been
significantly detected towards 8 globular clusters. Five of them (47 Tucanae,
Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices and clear evidence for an exponential cut-off in the range
1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission
from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral
indices , however the presence of an exponential cut-off
can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC
6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral
properties. From the observed gamma-ray luminosities, we estimate the total
number of MSPs that is expected to be present in these globular clusters. We
show that our estimates of the MSP population correlate with the stellar
encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters,
commensurate with previous estimates. The observation of high-energy gamma-ray
emission from a globular cluster thus provides a reliable independent method to
assess their millisecond pulsar populations that can be used to make
constraints on the original neutron star X-ray binary population, essential for
understanding the importance of binary systems in slowing the inevitable core
collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J.
Kn\"odlseder, N. Webb, B. Pancraz
Quality Business Leadership Summit: Panel Discussion with Afternoon Session Speakers
This paper provides a summary (via transcript) of the afternoon panel discussion from the inaugural Quality Business Leadership Summit, held on 01-May-2024 at Technological University Dublin
Atlas of the clinical genetics of human dilated cardiomyopathy
[Abstract] Aim. Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort.
Methods and results. In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes.
Conclusion. This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM.Hôpitaux de Paris; PHRC AOM0414
- …
