1,411 research outputs found
Evaluating the use of lecture capture using a revealed preference approach
This article discusses the introduction of lecture capture technology on a large undergraduate module with diverse student cohorts. Literature has so far relied on surveying students to discover their use of the technology or attempted to quantify the impact of watching lecture recordings on assessment performance. Alternatively, the principal contribution of this article is an evaluation of the use of the recorded lectures using a revealed preference approach. Specifically we identify to what extent students watched lecture recordings, rather than simply claimed to watch them when asked to provide comments on the technology. Data indicates the number of distinct students who watched recordings, the frequency with which they watched recordings, the average length of viewings as well as the time of day when lectures were viewed. We monitored viewings over two academic years, identifying ‘spikes’ in the number of viewings in the days before tests, as well as regularities in the viewing patterns across the two years. We analyse the data to assess the extent to which students used the recordings, how and when they watched the recordings. We conclude that the students value lecture recordings, making more extensive use of the recordings than has been identified in the literature to date. Ultimately, lecture recordings are suggested to offer valuable support for students’ independent study
A review of tennis racket performance parameters
The application of advanced engineering to tennis racket design has influenced the nature of the sport. As a result, the International Tennis Federation has established rules to limit performance, with the aim of protecting the nature of the game. This paper illustrates how changes to the racket affect the player-racket system. The review integrates engineering and biomechanical issues related to tennis racket performance, covering the biomechanical characteristics of tennis strokes, tennis racket performance, the effect of racket parameters on ball rebound and biomechanical interactions. Racket properties influence the rebound of the ball. Ball rebound speed increases with frame stiffness and as string tension decreases. Reducing inter-string contacting forces increases rebound topspin. Historical trends and predictive modelling indicate swingweights of around 0.030–0.035 kg/m2 are best for high ball speed and accuracy. To fully understand the effect of their design changes, engineers should use impact conditions in their experiments, or models, which reflect those of actual tennis strokes. Sports engineers, therefore, benefit from working closely with biomechanists to ensure realistic impact conditions
Increasing boys' and girls' intention to avoid teenage pregnancy: a cluster randomised control feasibility trial of an interactive video drama based intervention in post-primary schools in Northern Ireland
Background:
Adolescent men have a vital yet neglected role in reducing unintended teenage pregnancy (UTP). There is a need for gender-sensitive educational interventions.
Objectives:
To determine the value and feasibility of conducting an effectiveness trial of the If I Were Jack Relationship and Sexuality Education (RSE) intervention in a convenience quota sample of post-primary schools in Northern Ireland. Secondary objectives were to assess acceptability to schools, pupils (male/female, aged 14–15 years) and parents/guardians; to identify optimal delivery structures and systems; to establish participation rates and reach, including equality of engagement of different socioeconomic and religious types; to assess trial recruitment and retention rates; to assess variation in normal RSE practice; to refine survey instruments; to assess differences in outcomes for male and female pupils; to identify potential effect sizes that might be detected in an effectiveness trial and estimate appropriate sample size for that trial; and to identify costs of delivery and pilot methods for assessing cost-effectiveness.
Design:
Cluster randomised Phase II feasibility trial with an embedded process and economic evaluation.
Intervention:
A teacher-delivered classroom-based RSE resource – an interactive video drama (IVD) with classroom materials, teacher training and an information session for parents – to immerse young people in a hypothetical scenario of Jack, a teenager whose girlfriend is unintentionally pregnant. It addresses gender inequalities in RSE by focusing on young men and is designed to increase intentions to avoid UTP by encouraging young people to delay sexual intercourse and to use contraception consistently in sexual relationships.
Main outcome measures:
Abstinence from sexual intercourse (delaying initiation of sex or returning to abstinence) or avoidance of unprotected sexual intercourse (consistent correct use of contraception). Secondary outcomes included Knowledge, Attitudes, Skills and Intentions.
Results:
The intervention proved acceptable to schools, pupils and parents, as evidenced through positive process evaluation. One minor refinement to the parental component was required, namely the replacement of the teacher-led face-to-face information session for parents by online videos designed to deliver the intervention to parents/guardians into their home. School recruitment was successful (target 25%, achieved 38%). No school dropped out. Pupil retention was successful (target 85%, achieved 93%). The between-group difference in incidence of unprotected sex of 1.3% (95% confidence interval 0.55% to 2.2%) by 9 months demonstrated an effect size consistent with those reported to have had meaningful impact on UTP rates (resulting in an achievable sample size of 66 schools at Phase III). Survey instruments showed high acceptability and reliability of measures (Cronbach’s alpha: 0.5–0.7). Economic evaluation at Phase III is feasible because it was possible to (1) identify costs of delivering If I Were Jack (mean cost per pupil, including training of teachers, was calculated as £13.66); and (2) develop a framework for assessing cost-effectiveness.
Conclusion:
Trial methods were appropriate, and recruitment and retention of schools and pupils was satisfactory, successfully demonstrating all criteria for progression to a main trial. The perceived value of culture- and gender-sensitive public health interventions has been highlighted.
Future work:
Progression to a Phase III effectiveness trial.
Trial registration:
Current Controlled Trials ISRCTN99459996.
Funding:
This project was funded by the NIHR Public Health Research programme and will be published in full in Public Health Research; Vol. 5, No. 1. See the NIHR Journals Library website for further project information
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
A nonlinear updating algorithm captures suboptimal inference in the presence of signal-dependent noise
Bayesian models have advanced the idea that humans combine prior beliefs and sensory observations to optimize behavior. How the brain implements Bayes-optimal inference, however, remains poorly understood. Simple behavioral tasks suggest that the brain can flexibly represent probability distributions. An alternative view is that the brain relies on simple algorithms that can implement Bayes-optimal behavior only when the computational demands are low. To distinguish between these alternatives, we devised a task in which Bayes-optimal performance could not be matched by simple algorithms. We asked subjects to estimate and reproduce a time interval by combining prior information with one or two sequential measurements. In the domain of time, measurement noise increases with duration. This property takes the integration of multiple measurements beyond the reach of simple algorithms. We found that subjects were able to update their estimates using the second measurement but their performance was suboptimal, suggesting that they were unable to update full probability distributions. Instead, subjects’ behavior was consistent with an algorithm that predicts upcoming sensory signals, and applies a nonlinear function to errors in prediction to update estimates. These results indicate that the inference strategies employed by humans may deviate from Bayes-optimal integration when the computational demands are high
Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition
Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and
higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modelling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4BY358C mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioural assays, PDE4BY358C mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo.
PDE4BY358C mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 hours, was decreased at 7 days in PDE4BY358C mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signalling by PDE4B in a very late phase of consolidation. No effect of the PDE4BY358C mutation was observed in the pre-pulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory
- …
