2,086 research outputs found
A precision study of the fine tuning in the DiracNMSSM
Recently the DiracNMSSM has been proposed as a possible solution to reduce
the fine tuning in supersymmetry. We determine the degree of fine tuning needed
in the DiracNMSSM with and without non-universal gaugino masses and compare it
with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed
parameter regions we perform a precise calculation of the Higgs mass. In
addition, we include the limits from direct SUSY searches and dark matter
abundance. We find that both models are comparable in terms of fine tuning,
with the minimal fine tuning in the GNMSSM slightly smaller.Comment: 20 pages + appendices, 10 figure
Neuroethical issues in pharmacological cognitive enhancement.
This is the published manuscript. It is available online from the Wiley in Wiley Interdisciplinary Reviews: Cognitive Science here: http://onlinelibrary.wiley.com/doi/10.1002/wcs.1306/abstract;jsessionid=05002026F7F8502EFC9A9553EC8CE45C.f03t02.UNLABELLED: Neuroethics is an emerging field that in general deals with the ethics of neuroscience and the neuroscience of ethics. In particular, it is concerned with the ethical issues in the translation of neuroscience to clinical practice and in the public domain. Numerous ethical issues arise when healthy individuals use pharmacological substances known as pharmacological cognitive enhancers (PCEs) for non-medical purposes in order to boost higher-order cognitive processes such as memory, attention, and executive functions. However, information regarding their actual use, benefits, and harms to healthy individuals is currently lacking. Neuroethical issues that arise from their use include the unknown side effects that are associated with these drugs, concerns about the modification of authenticity and personhood, and as a result of inequality of access to these drugs, the lack of distributive justice and competitive fairness that they may cause in society. Healthy individuals might be coerced by social institutions that force them to take these drugs to function better. These drugs might enable or hinder healthy individuals to gain better moral and self-understanding and autonomy. However, how these drugs might achieve this still remains speculative and unknown. Hence, before concrete policy decisions are made, the cognitive effects of these drugs should be determined. The initiation of accurate surveys to determine the actual usage of these drugs by healthy individuals from different sections of the society is proposed. In addition, robust empirical research need to be conducted to delineate not only whether or not these drugs modify complex higher-order cognitive processes but also how they might alter important human virtues such as empathy, moral reasoning, creativity, and motivation in healthy individuals. WIREs Cogn Sci 2014, 5:533-549. doi: 10.1002/wcs.1306 For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article
Observation of Coherent Elastic Neutrino-Nucleus Scattering
The coherent elastic scattering of neutrinos off nuclei has eluded detection
for four decades, even though its predicted cross-section is the largest by far
of all low-energy neutrino couplings. This mode of interaction provides new
opportunities to study neutrino properties, and leads to a miniaturization of
detector size, with potential technological applications. We observe this
process at a 6.7-sigma confidence level, using a low-background, 14.6-kg
CsI[Na] scintillator exposed to the neutrino emissions from the Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic
signatures in energy and time, predicted by the Standard Model for this
process, are observed in high signal-to-background conditions. Improved
constraints on non-standard neutrino interactions with quarks are derived from
this initial dataset
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability
Corbicula fluminea is considered one of the
most important non-native invasive species (NIS) in
aquatic systems mainly due to its widespread distribution
and ecological and economic impacts. This species
is known to negatively affect native bivalves, also with
severe effects on biodiversity and ecosystem functioning.
Throughout an exhaustive bibliographic survey and
with the aid of Geographic Information Systems tools,
this study tracks the species dispersion from its native
range, including the description of important physical
and environmental barriers. Additional analyses were
conducted to examine possible influences of latitudinal/
temperature gradients on important traits (e.g. life span,
maximum and mean body length, growth at the end of
first year). Altitude and winter minimum temperature
appear to be delaying the invasion worldwide, but it
seems inevitable that the species will spread across the
globe. Latitude and summer temperature show a
relationship with growth and life span. Overall, the
information gathered in this review may be relevant to
forecast future distribution patterns of this NIS, and to
anticipate the possible implementation of effective
management measures. Moreover, it may constitute a
valuabletool inthe prediction of population responses to
an increasingly changing environment.This research was supported by FCT
(Portuguese Foundation for Science and Technology), through
a PhD grant attributed to D. Crespo (SFRH/BD/80252/2011), a
post-doc grant attributed to S. Leston (SFRH/BPD/91828/2012)
and M Dolbeth (SFRH/BPD/41117/2007) and BIOCHANGED
project (PTDC/MAR/111901/2009), subsidized by the
European Social Fund and MCTES (Ministério da Ciência,
Tecnologia e Ensino Superior) National Funds, through the
POPH (Human Potential Operational Programme), QREN
(National Strategic Reference Framework) and COMPETE
(Programa Operacional Factores de Competitividade).info:eu-repo/semantics/publishedVersio
Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition
INTRODUCTION
Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS).
METHODS
CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat.
RESULTS
Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches.
CONCLUSIONS
Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system
Resolution of inflammation: a new therapeutic frontier
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field
An investigation into aripiprazole's partial D(2) agonist effects within the dorsolateral prefrontal cortex during working memory in healthy volunteers
Rationale:
Working memory impairments in schizophrenia have been attributed to dysfunction of the dorsolateral prefrontal cortex (DLPFC) which in turn may be due to low DLPFC dopamine innervation. Conventional antipsychotic drugs block DLPFC D2 receptors, and this may lead to further dysfunction and working memory impairments. Aripiprazole is a D2 receptor partial agonist hypothesised to enhance PFC dopamine functioning, possibly improving working memory.
Objectives:
We probed the implications of the partial D2 receptor agonist actions of aripiprazole within the DLPFC during working memory. Investigations were carried out in healthy volunteers to eliminate confounds of illness or medication status. Aripiprazole’s prefrontal actions were compared with the D2/5-HT2A blocker risperidone to separate aripiprazole’s unique prefrontal D2 agonist actions from its serotinergic and striatal D2 actions that it shares with risperidone.
Method:
A double-blind, placebo-controlled, parallel design was implemented. Participants received a single dose of either 5 mg aripiprazole, 1 mg risperidone or placebo before performing the n-back task whilst undergoing fMRI scanning.
Results:
Compared with placebo, the aripiprazole group demonstrated enhanced DLPFC activation associated with a trend for improved discriminability (d’) and speeded reaction times. In contrast to aripiprazole’s neural effects, the risperidone group demonstrated a trend for reduced DLPFC recruitment. Unexpectedly, the risperidone group demonstrated similar effects to aripiprazole on d’ and additionally had reduced errors of commission compared with placebo.
Conclusion:
Aripiprazole has unique DLPFC actions attributed to its prefrontal D2 agonist action. Risperidone’s serotinergic action that results in prefrontal dopamine release may have protected against any impairing effects of its prefrontal D2 blockade
Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed
Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations
- …
