8,058 research outputs found
A Variational Approach to Particles in Lipid Membranes
A variety of models for the membrane-mediated interaction of particles in
lipid membranes, mostly well-established in theoretical physics, is reviewed
from a mathematical perspective. We provide mathematically consistent
formulations in a variational framework, relate apparently different modelling
approaches in terms of successive approximation, and investigate existence and
uniqueness. Numerical computations illustrate that the new variational
formulations are directly accessible to effective numerical methods
Chemical equilibration of quarks and gluons at RHIC and LHC energies
We study chemical equilibration of quarks and gluons in central nuclear
collisions at RHIC and LHC energies. The initial quark and gluon densities are
taken from earlier studies as well as from recent perturbative QCD estimates
and are then evolved via rate equations coupled to longitudinally
boost-invariant fluid dynamics. We find that, for RHIC initial conditions, the
lifetime of quark-gluon matter is too short in order for the quark and gluon
number densities to chemically equilibrate prior to hadronization. In contrast,
at LHC energies chemical equilibration is complete before the system
hadronizes. Entropy production due to chemical equilibration can be as large as
30%.Comment: 30 pages (latex2e), 13 postscript figures, corrected one figure,
further analysis performed, to be published in NP
Magnetic-field dependence of electron spin relaxation in n-type semiconductors
We present a theoretical investigation of the magnetic field dependence of
the longitudinal () and transverse () spin relaxation times of
conduction band electrons in n-type III-V semiconductors. In particular, we
find that the interplay between the Dyakonov-Perel process and an additional
spin relaxation channel, which originates from the electron wave vector
dependence of the electron -factor, yields a maximal at a finite
magnetic field. We compare our results with existing experimental data on
n-type GaAs and make specific additional predictions for the magnetic field
dependence of electron spin lifetimes.Comment: accepted for publication in PRB, minor changes to previous manuscrip
Simulating Dynamical Features of Escape Panic
One of the most disastrous forms of collective human behaviour is the kind of
crowd stampede induced by panic, often leading to fatalities as people are
crushed or trampled. Sometimes this behaviour is triggered in life-threatening
situations such as fires in crowded buildings; at other times, stampedes can
arise from the rush for seats or seemingly without causes. Tragic examples
within recent months include the panics in Harare, Zimbabwe, and at the
Roskilde rock concert in Denmark. Although engineers are finding ways to
alleviate the scale of such disasters, their frequency seems to be increasing
with the number and size of mass events. Yet, systematic studies of panic
behaviour, and quantitative theories capable of predicting such crowd dynamics,
are rare. Here we show that simulations based on a model of pedestrian
behaviour can provide valuable insights into the mechanisms of and
preconditions for panic and jamming by incoordination. Our results suggest
practical ways of minimising the harmful consequences of such events and the
existence of an optimal escape strategy, corresponding to a suitable mixture of
individualistic and collective behaviour.Comment: For related information see http://angel.elte.hu/~panic,
http://www.helbing.org, http://angel.elte.hu/~fij, and
http://angel.elte.hu/~vicse
Monte Carlo Modeling of Spin FETs Controlled by Spin-Orbit Interaction
A method for Monte Carlo simulation of 2D spin-polarized electron transport
in III-V semiconductor heterojunction FETs is presented. In the simulation, the
dynamics of the electrons in coordinate and momentum space is treated
semiclassically. The density matrix description of the spin is incorporated in
the Monte Carlo method to account for the spin polarization dynamics. The
spin-orbit interaction in the spin FET leads to both coherent evolution and
dephasing of the electron spin polarization. Spin-independent scattering
mechanisms, including optical phonons, acoustic phonons and ionized impurities,
are implemented in the simulation. The electric field is determined
self-consistently from the charge distribution resulting from the electron
motion. Description of the Monte Carlo scheme is given and simulation results
are reported for temperatures in the range 77-300 K.Comment: 18 pages, 7 figure
Electron Spin Relaxation in a Semiconductor Quantum Well
A fully microscopic theory of electron spin relaxation by the
D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor
quantum well with a magnetic field applied in the growth direction of the well.
We derive the Bloch equations for an electron spin in the well and define
microscopic expressions for the spin relaxation times. The dependencies of the
electron spin relaxation rate on the lowest quantum well subband energy,
magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review
Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd
A theory for the equilibrium low-temperature magnetization M of a diluted
Heisenberg antiferromagnetic chain is presented. The magnetization curve, M
versus B, is calculated using the exact contributions of finite chains with 1
to 5 spins, and the "rise and ramp approximation" for longer chains. Some
non-equilibrium effects that occur in a rapidly changing B, are also
considered. Specific non-equilibrium models based on earlier treatments of the
phonon bottleneck, and of spin flips associated with cross relaxation and with
level crossings, are discussed. Magnetization data on powders of TMMC diluted
with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured
at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from
pairs is used to determine the NN exchange constant, J, which changes from -5.9
K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained
in the superconducting magnets are compared with simulations based on the
equilibrium theory. Data for the differential susceptibility, dM/dB, were taken
in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples
in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more
severe as x decreased, were observed. The non-equilibrium effects are
tentatively interpreted using the "Inadequate Heat Flow Scenario," or to
cross-relaxation, and crossings of energy levels, including those of excited
states.Comment: 16 pages, 14 figure
Statistical signatures of critical behavior in small systems
The cluster distributions of different systems are examined to search for
signatures of a continuous phase transition. In a system known to possess such
a phase transition, both sensitive and insensitive signatures are present;
while in systems known not to possess such a phase transition, only insensitive
signatures are present. It is shown that nuclear multifragmentation results in
cluster distributions belonging to the former category, suggesting that the
fragments are the result of a continuous phase transition.Comment: 31 pages, two columns with 30 figure
Spin relaxation: From 2D to 1D
In inversion asymmetric semiconductors, spin-orbit interactions give rise to
very effective relaxation mechanisms of the electron spin. Recent work, based
on the dimensionally constrained D'yakonov Perel' mechanism, describes
increasing electron-spin relaxation times for two-dimensional conducting layers
with decreasing channel width. The slow-down of the spin relaxation can be
understood as a precursor of the one-dimensional limit
- …
