3,821 research outputs found
Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC
Higgs boson production in association with a hard central photon and two
forward tagging jets is expected to provide valuable information on Higgs boson
couplings in a range where it is difficult to disentangle weak-boson fusion
processes from large QCD backgrounds. We present next-to-leading order QCD
corrections to Higgs production in association with a photon via weak-boson
fusion at a hadron collider in the form of a flexible parton-level Monte Carlo
program. The QCD corrections to integrated cross sections are found to be small
for experimentally relevant selection cuts, while the shape of kinematic
distributions can be distorted by up to 20% in some regions of phase space.
Residual scale uncertainties at next-to-leading order are at the few-percent
level.Comment: 17 pages, 7 figures, 1 tabl
Detecting temporal and spatial effects of epithelial cancers with Raman spectroscopy.
PublishedJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Hindawi Publishing Corporation via the DOI in this record.Epithelial cancers, including those of the skin and cervix, are the most common type of cancers in humans. Many recent studies have attempted to use Raman spectroscopy to diagnose these cancers. In this paper, Raman spectral markers related to the temporal and spatial effects of cervical and skin cancers are examined through four separate but related studies. Results from a clinical cervix study show that previous disease has a significant effect on the Raman signatures of the cervix, which allow for near 100% classification for discriminating previous disease versus a true normal. A Raman microspectroscopy study showed that Raman can detect changes due to adjacent regions of dysplasia or HPV that cannot be detected histologically, while a clinical skin study showed that Raman spectra may be detecting malignancy associated changes in tissues surrounding nonmelanoma skin cancers. Finally, results of an organotypic raft culture study provided support for both the skin and the in vitro cervix results. These studies add to the growing body of evidence that optical spectroscopy, in this case Raman spectral markers, can be used to detect subtle temporal and spatial effects in tissue near cancerous sites that go otherwise undetected by conventional histology.The authors acknowledge the financial support of the
NCI/NIH (R01-CA95405 and R21-CA95995), as well
as the Howard Hughes Medical Institute (pre-doctoral
fellowship for MK). We would also like to thank the
doctors and staff at Vanderbilt University Medical Center
and Tri-state Women’s Health for all their assistance
Next-to-leading order QCD predictions for production at LHC
We calculate the complete next-to-leading order (NLO) QCD corrections to the
production in association with a jet at the LHC. We study the impacts
of the NLO QCD radiative corrections to the integrated and differential cross
sections and the dependence of the cross section on the
factorization/renormalization scale. We present the transverse momentum
distributions of the final -, Higgs-boson and leading-jet. We find that
the NLO QCD corrections significantly modify the physical observables, and
obviously reduce the scale uncertainty of the LO cross section. The QCD
K-factors can be 1.183 and 1.180 at the and
LHC respectively, when we adopt the inclusive event selection scheme with
, and . Furthermore, we make the comparison between the two scale
choices, and , and find the scale choice seems to be more
appropriate than the fixed scale .Comment: 18 pages, 7 figure
Scaling Patterns for QCD Jets
Jet emission at hadron colliders follows simple scaling patterns. Based on
perturbative QCD we derive Poisson and staircase scaling for final state as
well as initial state radiation. Parton density effects enhance staircase
scaling at low multiplicities. We propose experimental tests of our theoretical
findings in Z+jets and QCD gap jets production based on minor additions to
current LHC analyses.Comment: 36 pages, 16 figure
Spontaneous and deliberate future thinking: A dual process account
© 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
Resistance to Wheat streak mosaic virus identified in synthetic wheat lines
Citation: Shoup Rupp, J. L., Simon, Z. G., Gillett-Walker, B., & Fellers, J. P. (2014). Resistance
to Wheat streak mosaic virus identified in synthetic wheat lines. Retrieved from
http://krex.ksu.eduWheat streak mosaic virus (WSMV) is an important pathogen in wheat that causes significant yield losses each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resistance genes to WSMV. Two resistance genes have been derived from Thinopyrum intermedium through chromosome engineering, while a third gene was transferred from bread wheat through classical breeding. New sources of resistance are needed and synthetic wheat lines provide a means of accessing genetic variability in wheat progenitors. A collection of wheat synthetic lines was screened for WSMV resistance. Four lines, 07-SYN-27, -106, -164, and -383 had significant levels of resistance. Resistance was effective at 18 °C and virus accumulation was similar to the resistant control, WGGRC50 containing Wsm1. At 25 °C, resistance was no longer effective and virus accumulation was similar to the susceptible control, Tomahawk
Jet Dipolarity: Top Tagging with Color Flow
A new jet observable, dipolarity, is introduced that can distinguish whether
a pair of subjets arises from a color singlet source. This observable is
incorporated into the HEPTopTagger and is shown to improve discrimination
between top jets and QCD jets for moderate to high pT.Comment: 8 pages, 6 figures (updated to JHEP version
Distinguishing Various Models of the 125 GeV Boson in Vector Boson Fusion
The hint of a new particle around 125 GeV at the LHC through the decay modes
of diphoton and a number of others may point to quite a number of
possibilities. While at the LHC the dominant production mechanism for the Higgs
boson of the standard model and some other extensions is via the gluon fusion
process, the alternative vector boson fusion is more sensitive to electroweak
symmetry breaking through the gauge-Higgs couplings and therefore can be used
to probe for models beyond the standard model. In this work, using the well
known dijet-tagging technique to single out the vector boson fusion mechanism,
we investigate its capability to discriminate a number of models that have been
suggested to give an enhanced inclusive diphoton production rate, including the
standard model Higgs boson, fermiophobic Higgs boson, Randall-Sundrum radion,
inert-Higgs-doublet model, two-Higgs-doublet model, and the MSSM. The rates in
vector-boson fusion can give more information of the underlying models to help
distinguishing among the models.Comment: 31 pages, 3 figures; in this version some wordings are change
Dark Matter from Minimal Flavor Violation
We consider theories of flavored dark matter, in which the dark matter
particle is part of a multiplet transforming nontrivially under the flavor
group of the Standard Model in a manner consistent with the principle of
Minimal Flavor Violation (MFV). MFV automatically leads to the stability of the
lightest state for a large number of flavor multiplets. If neutral, this
particle is an excellent dark matter candidate. Furthermore, MFV implies
specific patterns of mass splittings among the flavors of dark matter and
governs the structure of the couplings between dark matter and ordinary
particles, leading to a rich and predictive cosmology and phenomenology. We
present an illustrative phenomenological study of an effective theory of a
flavor SU(3)_Q triplet, gauge singlet scalar.Comment: 10 pages, 2 figures; v2: references added, minor changes to collider
analysis, conclusions unchange
Composite Higgs Search at the LHC
The Higgs boson production cross-sections and decay rates depend, within the
Standard Model (SM), on a single unknown parameter, the Higgs mass. In
composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone
boson from a strongly-interacting sector, additional parameters control the
Higgs properties which then deviate from the SM ones. These deviations modify
the LEP and Tevatron exclusion bounds and significantly affect the searches for
the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced,
which results in deterioration of the Higgs searches but the deviations of the
Higgs couplings can also allow for an enhancement of the gluon-fusion
production channel, leading to higher statistical significances. The search in
the H to gamma gamma channel can also be substantially improved due to an
enhancement of the branching fraction for the decay of the Higgs boson into a
pair of photons.Comment: 32 pages, 16 figure
- …
