1,855 research outputs found
Anomalous Couplings in Double Higgs Production
The process of gluon-initiated double Higgs production is sensitive to
non-linear interactions of the Higgs boson. In the context of the Standard
Model, studies of this process focused on the extraction of the Higgs trilinear
coupling. In a general parametrization of New Physics effects, however, an even
more interesting interaction that can be tested through this channel is the
(ttbar hh) coupling. This interaction vanishes in the Standard Model and is a
genuine signature of theories in which the Higgs boson emerges from a
strongly-interacting sector. In this paper we perform a model-independent
estimate of the LHC potential to detect anomalous Higgs couplings in
gluon-fusion double Higgs production. We find that while the sensitivity to the
trilinear is poor, the perspectives of measuring the new (ttbar hh) coupling
are rather promising.Comment: 22 pages, 9 figures. v2: plots of Figs.8 and 9 redone to include
experimental uncertainty on the Higgs couplings, references adde
A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally
Higgs Interference Effects in \Pg \Pg \to \PZ\PZ and their Uncertainty
Interference between the Standard Model Higgs boson and continuum
contributions is considered in the heavy-mass scenario. Results are available
at leading order for the background. It is discussed how to combine the result
with the next-to-next-to-leading order Higgs production cross-section and a
proposal for estimating the associated theoretical uncertainty is presented.Comment: 25 pages, 10 figures; improved numerical accuracy, Numerics updated,
conclusions unchanged, references added. v
NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM
We present a next-to-leading order calculation of Higgs boson production plus
one and two jets via gluon fusion interfaced to shower Monte Carlo programs,
implemented according to the POWHEG method. For this implementation we have
used a new interface of the POWHEG BOX with MadGraph4, that generates the codes
for generic Born and real processes automatically. The virtual corrections have
been taken from the MCFM code. We carry out a simple phenomenological study of
our generators, comparing them among each other and with fixed next-to-leading
order results.Comment: 27 pages, 21 figure
Higgs Low-Energy Theorem (and its corrections) in Composite Models
The Higgs low-energy theorem gives a simple and elegant way to estimate the
couplings of the Higgs boson to massless gluons and photons induced by loops of
heavy particles. We extend this theorem to take into account possible nonlinear
Higgs interactions resulting from a strong dynamics at the origin of the
breaking of the electroweak symmetry. We show that, while it approximates with
an accuracy of order a few percents single Higgs production, it receives
corrections of order 50% for double Higgs production. A full one-loop
computation of the gg->hh cross section is explicitly performed in MCHM5, the
minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard
Model fermions embedded into the fundamental representation of SO(5). In
particular we take into account the contributions of all fermionic resonances,
which give sizeable (negative) corrections to the result obtained considering
only the Higgs nonlinearities. Constraints from electroweak precision and
flavor data on the top partners are analyzed in detail, as well as direct
searches at the LHC for these new fermions called to play a crucial role in the
electroweak symmetry breaking dynamics.Comment: 30 pages + appendices and references, 12 figures. v2: discussion of
flavor constraints improved; references added; electroweak fit updated,
results unchanged. Matches published versio
Evolution of the Stellar Mass-Metallicity Relation. II. Constraints on Galactic Outflows from the Mg Abundances of Quiescent Galaxies
We present the stellar mass–[Fe/H] and mass–[Mg/H] relation of quiescent galaxies in two galaxy clusters at z ~ 0.39 and z ~ 0.54. We derive the age, [Fe/H], and [Mg/Fe] for each individual galaxy using a full-spectrum fitting technique. By comparing with the relations for z ~ 0 Sloan Digital Sky Survey galaxies, we confirm our previous finding that the mass–[Fe/H] relation evolves with redshift. The mass–[Fe/H] relation at higher redshift has lower normalization and possibly steeper slope. However, based on our sample, the mass–[Mg/H] relation does not evolve over the observed redshift range. We use a simple analytic chemical evolution model to constrain the average outflow that these galaxies experience over their lifetime, via the calculation of mass-loading factor. We find that the average mass-loading factor η is a power-law function of galaxy stellar mass, . The measured mass-loading factors are consistent with the results of other observational methods for outflow measurements and with the predictions where outflow is caused by star formation feedback in turbulent disks
Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order
Results for next-to-leading order QCD corrections to the pp(p\bar{p}) -> t
\bar{t} -> W^+W^- b\bar{b} -> e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b}
+X processes with complete off-shell effects are presented for the first time.
Double-, single- and non-resonant top contributions of the order
{\cal{O}}(\alpha_{s}^3 \alpha^4) are consistently taken into account, which
requires the introduction of a complex-mass scheme for unstable top quarks.
Moreover, the intermediate W bosons are treated off-shell. Comparison to the
narrow width approximation for top quarks, where non-factorizable corrections
are not accounted for is performed. Besides the total cross section and its
scale dependence, several differential distributions at the TeVatron run II and
the LHC are given. In case of the TeVatron the forward-backward asymmetry of
the top is recalculated afresh. With inclusive selection cuts, the
forward-backward asymmetry amounts to A^{t}_{FB} = 0.051 +/- 0.0013.
Furthermore, the corrections with respect to leading order are positive and of
the order 2.3% for the TeVatron and 47% for the LHC. A study of the scale
dependence of our NLO predictions indicates that the residual theoretical
uncertainty due to higher order corrections is 8% for the TeVatron and 9% for
the LHC.Comment: 35 pages, 39 figures, 3 tables. References and note added, version to
appear in JHE
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
- …
