4,024 research outputs found

    Testing A (Stringy) Model of Quantum Gravity

    Get PDF
    I discuss a specific model of space-time foam, inspired by the modern non-perturbative approach to string theory (D-branes). The model views our world as a three brane, intersecting with D-particles that represent stringy quantum gravity effects, which can be real or virtual. In this picture, matter is represented generically by (closed or open) strings on the D3 brane propagating in such a background. Scattering of the (matter) strings off the D-particles causes recoil of the latter, which in turn results in a distortion of the surrounding space-time fluid and the formation of (microscopic, i.e. Planckian size) horizons around the defects. As a mean-field result, the dispersion relation of the various particle excitations is modified, leading to non-trivial optical properties of the space time, for instance a non-trivial refractive index for the case of photons or other massless probes. Such models make falsifiable predictions, that may be tested experimentally in the foreseeable future. I describe a few such tests, ranging from observations of light from distant gamma-ray-bursters and ultra high energy cosmic rays, to tests using gravity-wave interferometric devices and terrestrial particle physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings style. Invited talk at the third international conference on Dark Matter in Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200

    On CPT Symmetry: Cosmological, Quantum-Gravitational and other possible violations and their phenomenology

    Full text link
    I discuss various ways in which CPT symmetry may be violated, and their phenomenology in current or immediate future experimental facilities, both terrestrial and astrophysical. Specifically, I discuss first violations of CPT symmetry due to the impossibility of defining a scattering matrix as a consequence of the existence of microscopic or macroscopic space-time boundaries, such as Planck-scale Black-Hole (event) horizons, or cosmological horizons due to the presence of a (positive) cosmological constant in the Universe. Second, I discuss CPT violation due to breaking of Lorentz symmetry, which may characterize certain approaches to quantum gravity, and third, I describe models of CPT non invariance due to violations of locality of interactions. In each of the above categories I discuss experimental sensitivities. I argue that the majority of Lorentz-violating cases of CPT breaking, with minimal (linear) suppression by the Planck-mass scale, are already excluded by current experimental tests. There are however some (stringy) models which can evade these constraints.Comment: 27 pages latex, Conference talk Beyond the Desert 200

    Testing the Nambu-Goldstone Hypothesis for Quarks and Leptons at the LHC

    Get PDF
    The hierarchy of the Yukawa couplings is an outstanding problem of the standard model. We present a class of models in which the first and second generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that parameterize a non-compact Kahler manifold, explaining the small values of these fermion masses relative to those of the third generation. We also provide an example of such a model. We find that various regions of the parameter space in this scenario can give the correct dark matter abundance, and that nearly all of these regions evade other phenomenological constraints. We show that for gluino mass ~700 GeV, model points from these regions can be easily distinguished from other mSUGRA points at the LHC with only 7 fb^(-1) of integrated luminosity at 14 TeV. The most striking signatures are a dearth of b- and tau-jets, a great number of multi-lepton events, and either an "inverted" slepton mass hierarchy, narrowed slepton mass hierarchy, or characteristic small-mu spectrum.Comment: Corresponds to published versio

    Generalized Attractors in Five-Dimensional Gauged Supergravity

    Full text link
    In this paper we study generalized attractors in N=2 gauged supergravity theory in five dimensions coupled to arbitrary number of hyper, vector and tensor multiplets. We look for attractor solutions with constant anholonomy coefficients. By analyzing the equations of motion we derive the attractor potential. We further show that the generalized attractor potential can be obtained from the fermionic shifts. We study some simple examples and show that constant anholonomy gives rise to homogeneous black branes in five dimensions.Comment: 30 pages, no figures,V3 minor revisions, to appear in JHE

    Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers

    Get PDF
    Background: DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end joining (NHEJ) pathway required for the repair of DNA double strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. Methods: We evaluated clinicopathological significance of DNA-PKcs protein expression in 1161 tumours and DNA-PKcs mRNA expression in 1950 tumours. We correlated DNA-PKcs to other markers of aggressive phenotypes, DNA repair, apoptosis and cell cycle regulation. Results: Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps<0.05). Absence of BRCA1, low XRCC1/SMUG1/APE1/Polβ were also more likely in low DNA-PKcs expressing tumours (ps<0.05). Low DNA-PKcs protein expression was significantly associated with worse breast cancer specific survival (BCCS) in univariate and multivariate analysis (ps<0.01). At the mRNA level, low DNA-PKcs was associated with PAM50.Her2 and PAM50.LumA molecular phenotypes (ps<0.01) and poor BCSS. In patients with ER positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Conclusions: Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers

    Revealing the electroweak properties of a new scalar resonance

    Get PDF
    One or more new heavy resonances may be discovered in experiments at the CERN Large Hadron Collider. In order to determine if such a resonance is the long-awaited Higgs boson, it is essential to pin down its spin, CP, and electroweak quantum numbers. Here we describe how to determine what role a newly-discovered neutral CP-even scalar plays in electroweak symmetry breaking, by measuring its relative decay rates into pairs of electroweak vector bosons: WW, ZZ, \gamma\gamma, and Z\gamma. With the data-driven assumption that electroweak symmetry breaking respects a remnant custodial symmetry, we perform a general analysis with operators up to dimension five. Remarkably, only three pure cases and one nontrivial mixed case need to be disambiguated, which can always be done if all four decay modes to electroweak vector bosons can be observed or constrained. We exhibit interesting special cases of Higgs look-alikes with nonstandard decay patterns, including a very suppressed branching to WW or very enhanced branchings to \gamma\gamma and Z\gamma. Even if two vector boson branching fractions conform to Standard Model expectations for a Higgs doublet, measurements of the other two decay modes could unmask a Higgs imposter.Comment: 23 pages, two figures; v2: minor revision and version to appear in JHE

    Virtual signatures of dark sectors in Higgs couplings

    Full text link
    Where collider searches for resonant invisible particles loose steam, dark sectors might leave their trace as virtual effects in precision observables. Here we explore this option in the framework of Higgs portal models, where a sector of dark fermions interacts with the standard model through a strong renormalizable coupling to the Higgs boson. We show that precise measurements of Higgs-gauge and triple Higgs interactions can probe dark fermions up to the TeV scale through virtual corrections. Observation prospects at the LHC and future lepton colliders are discussed for the so-called singlet-doublet model of Majorana fermions, a generalization of the bino-higgsino scenario in supersymmetry. We advocate a two-fold search strategy for dark sectors through direct and indirect observables.Comment: 20 pages, 7 figures, 1 tabl

    Interplay of LFV and slepton mass splittings at the LHC as a probe of the SUSY seesaw

    Full text link
    We study the impact of a type-I SUSY seesaw concerning lepton flavour violation (LFV) both at low-energies and at the LHC. The study of the di-lepton invariant mass distribution at the LHC allows to reconstruct some of the masses of the different sparticles involved in a decay chain. In particular, the combination with other observables renders feasible the reconstruction of the masses of the intermediate sleptons involved in χ20~χ10 \chi_2^0\to \tilde \ell \,\ell \to \ell \,\ell\,\chi_1^0 decays. Slepton mass splittings can be either interpreted as a signal of non-universality in the SUSY soft breaking-terms (signalling a deviation from constrained scenarios as the cMSSM) or as being due to the violation of lepton flavour. In the latter case, in addition to these high-energy processes, one expects further low-energy manifestations of LFV such as radiative and three-body lepton decays. Under the assumption of a type-I seesaw as the source of neutrino masses and mixings, all these LFV observables are related. Working in the framework of the cMSSM extended by three right-handed neutrino superfields, we conduct a systematic analysis addressing the simultaneous implications of the SUSY seesaw for both high- and low-energy lepton flavour violation. We discuss how the confrontation of slepton mass splittings as observed at the LHC and low-energy LFV observables may provide important information about the underlying mechanism of LFV.Comment: 50 pages, 42 eps Figures, typos correcte

    Cross-sectional analysis of association between socioeconomic status and utilization of primary total hip joint replacements 2006-7 : Australian orthopaedic association national joint replacement registry

    Get PDF
    Background The utilization of total hip replacement (THR) surgery is rapidly increasing, however few data examine whether these procedures are associated with socioeconomic status (SES) within Australia. This study examined primary THR across SES for both genders for the Barwon Statistical Division (BSD) of Victoria, Australia.Methods Using the Australian Orthopaedic Association National Joint Replacement Registry data for 2006&ndash;7, primary THR with a diagnosis of osteoarthritis (OA) among residents of the BSD was ascertained. The Index of Relative Socioeconomic Disadvantage was used to measure SES; determined by matching residential addresses with Australian Bureau of Statistics census data. The data were categorised into quintiles; quintile 1 indicating the most disadvantaged. Age- and sex-specific rates of primary THR per 1,000 person years were reported for 10-year age bands using the total population at risk.Results Females accounted for 46.9% of the 642 primary THR performed during 2006&ndash;7. THR utilization per 1,000 person years was 1.9 for males and 1.5 for females. The highest utilization of primary THR was observed in those aged 70&ndash;79&thinsp;years (males 6.1, and females 5.4 per 1,000 person years). Overall, the U-shaped pattern of THR across SES gave the appearance of bimodality for both males and females, whereby rates were greater for both the most disadvantaged and least disadvantaged groups.Conclusions Further work on a larger scale is required to determine whether relationships between SES and THR utilization for the diagnosis of OA is attributable to lifestyle factors related to SES, or alternatively reflects geographic and health system biases. Identifying contributing factors associated with SES may enhance resource planning and enable more effective and focussed preventive strategies for hip OA. <br /

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag
    corecore