705 research outputs found
Lepton polarization correlations in
In this work we will study the polarizations of both leptons () in the
decay channel . In the case of the dileptonic inclusive
decay , where apart from the polarization asymmetries
of single lepton , one can also observe the polarization asymmetries of
both leptons simultaneously. If this sort of measurement is possible then we
can have, apart from decay rate, FB asymmetry and the six single lepton
polarization asymmetries (three each for and ), nine more
double polarization asymmetries. This will give us a very useful tool in more
strict testing of SM and the physics beyond. We discuss the double polarization
asymmetries of leptons in the decay mode within
the SM and the Minimal Supersymmetric extensions of it.Comment: 21 pages, 21 figures; version to match paper to appear in PR
Asymptotics of the mean-field Heisenberg model
We consider the mean-field classical Heisenberg model and obtain detailed
information about the total spin of the system by studying the model on a
complete graph and sending the number of vertices to infinity. In particular,
we obtain Cramer- and Sanov-type large deviations principles for the total spin
and the empirical spin distribution and demonstrate a second-order phase
transition in the Gibbs measures. We also study the asymptotics of the total
spin throughout the phase transition using Stein's method, proving central
limit theorems in the sub- and supercritical phases and a nonnormal limit
theorem at the critical temperature.Comment: 44 page
Scalar Decay in Chaotic Mixing
I review the local theory of mixing, which focuses on infinitesimal blobs of
scalar being advected and stretched by a random velocity field. An advantage of
this theory is that it provides elegant analytical results. A disadvantage is
that it is highly idealised. Nevertheless, it provides insight into the
mechanism of chaotic mixing and the effect of random fluctuations on the rate
of decay of the concentration field of a passive scalar.Comment: 35 pages, 15 figures. Springer-Verlag conference style svmult.cls
(included). Published in "Transport in Geophysical Flows: Ten Years After,"
Proceedings of the Grand Combin Summer School, 14-24 June 2004, Valle
d'Aosta, Italy. Fixed some typo
Classical and quantum properties of a 2-sphere singularity
Recently Boehmer and Lobo have shown that a metric due to Florides, which has
been used as an interior Schwarzschild solution, can be extended to reveal a
classical singularity that has the form of a two-sphere. Here the singularity
is shown to be a scalar curvature singularity that is both timelike and
gravitationally weak. It is also shown to be a quantum singularity because the
Klein-Gordon operator associated with quantum mechanical particles approaching
the singularity is not essentially self-adjoint.Comment: 10 pages, 1 figure, minor corrections, final versio
SuperWIMP Dark Matter Signals from the Early Universe
Cold dark matter may be made of superweakly-interacting massive particles,
superWIMPs, that naturally inherit the desired relic density from late decays
of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in
supergravity and Kaluza-Klein gravitons from extra dimensions. These particles
are impossible to detect in all dark matter experiments. We find, however, that
superWIMP dark matter may be discovered through cosmological signatures from
the early universe. In particular, superWIMP dark matter has observable
consequences for Big Bang nucleosynthesis and the cosmic microwave background
(CMB), and may explain the observed underabundance of 7Li without upsetting the
concordance between deuterium and CMB baryometers. We discuss implications for
future probes of CMB black body distortions and collider searches for new
particles. In the course of this study, we also present a model-independent
analysis of entropy production from late-decaying particles in light of WMAP
data.Comment: 19 pages, 5 figures, typos correcte
A recent rebuilding of most spirals ?
Re-examination of the properties of distant galaxies leads to the evidence
that most present-day spirals have built up half of their stellar masses during
the last 8 Gyr, mostly during several intense phases of star formation during
which they took the appearance of luminous infrared galaxies (LIRGs). Distant
galaxy morphologies encompass all of the expected stages of galaxy merging,
central core formation and disk growth, while their cores are much bluer than
those of present-day bulges. We have tested a spiral rebuilding scenario, for
which 75+/-25% of spirals have experienced their last major merger event less
than 8 Gyr ago. It accounts for the simultaneous decreases, during that period,
of the cosmic star formation density, of the merger rate, of the number
densities of LIRGs and of compact galaxies, while the densities of ellipticals
and large spirals are essentially unaffected.Comment: (1) GEPI, Obs. Meudon, France ;(2)Max-Planck Institut fuer
Astronomie, Germany (3) National Astronomical Observatories, CAS, China. Five
pages, 1 figure. To be published in "Starbursts: From 30 Doradus to Lyman
Break Galaxies", held in Cambridge, ed. R. de Grijs & R. M. Gonzalez Delgado
(Dordrecht: Kluwer
FastJet user manual
FastJet is a C++ package that provides a broad range of jet finding and
analysis tools. It includes efficient native implementations of all widely used
2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as
well as access to 3rd party jet algorithms through a plugin mechanism,
including all currently used cone algorithms. FastJet also provides means to
facilitate the manipulation of jet substructure, including some common boosted
heavy-object taggers, as well as tools for estimation of pileup and
underlying-event noise levels, determination of jet areas and subtraction or
suppression of noise in jets.Comment: 69 pages. FastJet 3 is available from http://fastjet.fr
Towards coherent optical control of a single hole spin: rabi rotation of a trion conditional on the spin state of the hole
A hole spin is a potential solid-state q-bit, that may be more robust against nuclear spin induced dephasing than an electron spin. Here we propose and demonstrate the sequential preparation, control and detection of a single hole spin trapped on a self-assembled InGaAs/GaAs quantum dot. The dot is embedded in a photodiode structure under an applied electric field. Fast, triggered, initialization of a hole spin is achieved by creating a spin-polarized electron-hole pair with a picosecond laser pulse, and in an applied electric field, waiting for the electron to tunnel leaving a spin-polarized hole. Detection of the hole spin with picoseconds time resolution is achieved using a second picosecond laser pulse to probe the positive trion transition, where a trion is created conditional on the hole spin being detected as a change in photocurrent. Finally, using this setup we observe a Rabi rotation of the hole-trion transition that is conditional on the hole spin, which for a pulse area of 2 pi can be used to impart a phase shift of pi between the hole spin states, a non-general manipulation of the hole spin. (C) 2009 Elsevier Ltd. All rights reserved
Phenomenology of non-standard Z couplings in exclusive semileptonic b -> s transitions
The rare decays , and
are analyzed in a generic scenario where New Physics effects
enter predominantly via penguin contributions. We show that this
possibility is well motivated on theoretical grounds, as the vertex
is particularly susceptible to non-standard dynamics. In addition, such a
framework is also interesting phenomenologically since the coupling
is rather poorly constrained by present data. The characteristic features of
this scenario for the relevant decay rates and distributions are investigated.
We emphasize that both sign and magnitude of the forward-backward asymmetry of
the decay leptons in , , carry sensitive information on New Physics. The observable is proposed as a useful probe of
non-standard CP violation in couplings.Comment: Minor modifications; version to appear in Phys. Rev.
- …
