522 research outputs found

    The Improvement of Teaching Through Classroom Supervision

    Get PDF

    Z boson pair production at LHC in a stabilized Randall-Sundrum scenario

    Get PDF
    We study the Z boson pair production at LHC in the Randall-Sundrum scenario with the Goldberger-Wise stabilization mechanism. It is shown that comprehensive account of the Kaluza-Klein graviton and radion effects is crucial to probe the model: The KK graviton effects enhance the cross section of ggZZg g \to Z Z on the whole so that the resonance peak of the radion becomes easy to detect, whereas the RS effects on the qqˉZZq\bar{q} \to Z Z process are rather insignificant. The pTp_T and invariant-mass distributions are presented to study the dependence of the RS model parameters. The production of longitudinally polarized Z bosons, to which the SM contributions are suppressed, is mainly due to KK gravitons and the radion, providing one of the most robust methods to signal the RS effects. The 1σ1 \sigma sensitivity bounds on (Λπ,mϕ)(\Lambda_\pi, m_\phi) with k/MPl=0.1k/M_{\rm Pl} =0.1 are also obtained such that the effective weak scale Λπ\Lambda_\pi of order 5 TeV can be experimentally probed.Comment: 28 pages, LaTex file, 18 eps figure

    Infrared spectroscopy of NaCl(CH3OH)n complexes in helium nanodroplets

    Get PDF
    Infrared (IR) spectra of complexes between NaCl and methanol have been recorded for the first time. These complexes were formed in liquid helium nanodroplets by consecutive pick-up of NaCl and CH3OH molecules. For the smallest NaCl(CH3OH)n complexes where n = 1-3, the IR data suggest that the lowest energy isomer is the primary product in each case. The predominant contribution to the binding comes from ionic hydrogen bonds between the OH in each methanol molecule and the chloride ion in the NaCl, as established by the large red-shift of the OH stretching bands compared with the isolated CH3OH molecule. For n ≥ 4 there is a dramatic shift from discrete vibrational bands to very broad absorption envelopes, suggesting a profound change in the structural landscape and, in particular, access to multiple low-energy isomers

    Smash products for secondary homotopy groups

    Get PDF
    We construct a smash product operation on secondary homotopy groups yielding the structure of a lax symmetric monoidal functor. Applications on cup-one products, Toda brackets and Whitehead products are considered. In particular we prove a formula for the crossed effect of the cup-one product operation on unstable homotopy groups of spheres which was claimed by Barratt-Jones-Mahowald.Comment: We give a clearer description of the tensor product of symmetric sequences of quadratic pair module

    Some anisotropic universes in the presence of imperfect fluid coupling with spatial curvature

    Full text link
    We consider Bianchi VI spacetime, which also can be reduced to Bianchi types VI0-V-III-I. We initially consider the most general form of the energy-momentum tensor which yields anisotropic stress and heat flow. We then derive an energy-momentum tensor that couples with the spatial curvature in a way so as to cancel out the terms that arise due to the spatial curvature in the evolution equations of the Einstein field equations. We obtain exact solutions for the universes indefinetly expanding with constant mean deceleration parameter. The solutions are beriefly discussed for each Bianchi type. The dynamics of the models and fluid are examined briefly, and the models that can approach to isotropy are determined. We conclude that even if the observed universe is almost isotropic, this does not necessarily imply the isotropy of the fluid (e.g., dark energy) affecting the evolution of the universe within the context of general relativity.Comment: 17 pages, no figures; to appear in International Journal of Theoretical Physics; in this version (which is more concise) an equation added, some references updated and adde

    Hierarchies from Fluxes in String Compactifications

    Get PDF
    Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory and F-theory compactifications on Calabi-Yau four-folds. In each case, the hierarchy of scales is fixed by a choice of RR and NS fluxes in the compact manifold. Our solutions involve compactifications of the Klebanov-Strassler gravity dual to a confining N=1 supersymmetric gauge theory,and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge theory.Comment: 35 pages. v2: minor eqn. and reference change

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    The Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang

    Get PDF
    We propose a cosmological scenario in which the hot big bang universe is produced by the collision of a brane in the bulk space with a bounding orbifold plane, beginning from an otherwise cold, vacuous, static universe. The model addresses the cosmological horizon, flatness and monopole problems and generates a nearly scale-invariant spectrum of density perturbations without invoking superluminal expansion (inflation). The scenario relies, instead, on physical phenomena that arise naturally in theories based on extra dimensions and branes. As an example, we present our scenario predominantly within the context of heterotic M-theory. A prediction that distinguishes this scenario from standard inflationary cosmology is a strongly blue gravitational wave spectrum, which has consequences for microwave background polarization experiments and gravitational wave detectors.Comment: 67 pages, 4 figures. v2,v3: minor corrections, references adde
    corecore