4,783 research outputs found

    A molecular line scan in the Hubble Deep Field North

    Get PDF
    We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z2. We reach a CO detection limit that is deep enough to detect essentially all z>1 CO lines reported in the literature so far. We have developed and applied different line searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ~2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available SEDs. Two secure CO detections in our scan are identified with star-forming galaxies at z=1.784 and at z=2.047. These galaxies have colors consistent with the `BzK' color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF850.1 at z=5.183. We consider an additional 9 line candidates as high quality. Our observations also provide a deep 3mm continuum map (1-sigma noise level = 8.6 μJy/beam). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the SFR density at 1<z<3, unless high dust temperatures are invoked. The present study represents a first, fundamental step towards an unbiased census of molecular gas in `normal' galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era

    A Molecular Line Scan in the Hubble Deep Field North: Constraints on the CO Luminosity Function and the Cosmic H_2 Density

    Get PDF
    We present direct constraints on the CO luminosity function at high redshift and the resulting cosmic evolution of the molecular gas density, ρH_2(z), based on a blind molecular line scan in the Hubble Deep Field North (HDF-N) using the IRAM Plateau de Bure Interferometer. Our line scan of the entire 3 mm window (79-115 GHz) covers a cosmic volume of ~7000 Mpc^3, and redshift ranges z 2. We use the rich multiwavelength and spectroscopic database of the HDF-N to derive some of the best constraints on CO luminosities in high redshift galaxies to date. We combine the blind CO detections in our molecular line scan (presented in a companion paper) with stacked CO limits from galaxies with available spectroscopic redshifts (slit or mask spectroscopy from Keck and grism spectroscopy from the Hubble Space Telescope) to give first blind constraints on high-z CO luminosity functions and the cosmic evolution of the H_2 mass density ρH_2(z) out to redshifts z ~ 3. A comparison to empirical predictions of ρH_2(z) shows that the securely detected sources in our molecular line scan already provide significant contributions to the predicted ρH_2(z) in the redshift bins 〈z〉 ~ 1.5 and 〈z〉 ~ 2.7. Accounting for galaxies with CO luminosities that are not probed by our observations results in cosmic molecular gas densities ρH_2(z) that are higher than current predictions. We note, however, that the current uncertainties (in particular the luminosity limits, number of detections, as well as cosmic volume probed) are significant, a situation that is about to change with the emerging ALMA observatory

    Early star-forming galaxies and the reionization of the Universe

    Full text link
    Star forming galaxies represent a valuable tracer of cosmic history. Recent observational progress with Hubble Space Telescope has led to the discovery and study of the earliest-known galaxies corresponding to a period when the Universe was only ~800 million years old. Intense ultraviolet radiation from these early galaxies probably induced a major event in cosmic history: the reionization of intergalactic hydrogen. New techniques are being developed to understand the properties of these most distant galaxies and determine their influence on the evolution of the universe.Comment: Review article appearing in Nature. This posting reflects a submitted version of the review formatted by the authors, in accordance with Nature publication policies. For the official, published version of the review, please see http://www.nature.com/nature/archive/index.htm

    Tests of CPT Invariance at Neutrino Factories

    Full text link
    We investigate possible tests of CPT invariance on the level of event rates at neutrino factories. We do not assume any specific model but phenomenological differences in the neutrino-antineutrino masses and mixing angles in a Lorentz invariance preserving context, such as it could be induced by physics beyond the Standard Model. We especially focus on the muon neutrino and antineutrino disappearance channels in order to obtain constraints on the neutrino-antineutrino mass and mixing angle differences; we found, for example, that the sensitivity m3mˉ31.9104eV|m_3 - \bar{m}_3| \lesssim 1.9 \cdot 10^{-4} \mathrm{eV} could be achieved.Comment: 6 pages, 1 figure, RevTeX4. Final version to be published in Phys. Rev.

    The Brown Dwarf Kinematics Project (BDKP) I. Proper Motions and Tangential Velocities for a Large Sample of Late-type M, L and T Dwarfs

    Full text link
    We report proper motion measurements for 427 late-type M, L and T dwarfs, 332 of which have been measured for the first time. Combining these new proper motions with previously published measurements yields a sample of 841 M7-T8 dwarfs. We combined parallax measurements or calculated spectrophotometric distances and computed tangential velocities for the entire sample. We find that kinematics for the full and volume-limited 20 pc samples are consistent with those expected for the Galactic thin disk, with no significant differences between late-type M, L, and T dwarfs. Applying an age-velocity relation we conclude that the average kinematic age of the 20 pc sample of ultracool dwarfs is older than recent kinematic estimates and more consistent with age results calculated with population synthesis models. There is a statistically distinct population of high tangential velocity sources whose kinematics suggest an even older population of ultracool dwarfs belonging to either the Galactic thick disk or halo. We isolate subsets of the entire sample, including low surface-gravity dwarfs, unusually blue L dwarfs, and photometric outliers in J-Ks color and investigate their kinematics. We find that the spectroscopically distinct class of unusually blue L dwarfs has kinematics clearly consistent with old age, implying that high surface-gravity and/or low metallicity may be relevant to their spectral properties. The low surface-gravity dwarfs are kinematically younger than the overall population, and the kinematics of the red and blue ultracool dwarfs suggest ages that are younger and older than the full sample, respectively. We also present a reduced proper motion diagram at 2MASS Ks for the entire population and find that a limit of H_Ks > 18 excludes M dwarfs from the L and T dwarf population regardless of near-infrared color.Comment: Accepted for publication in the Astronomical Journal, 21 pages text, 12 tables, 12 figure

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    JWST Pathfinder Telescope Integration

    Get PDF
    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015

    Identifying birth places of young isolated neutron stars

    Full text link
    Young isolated radio-quiet neutron stars are still hot enough to be detectable at X-ray and optical wavelengths due to their thermal emission and can hence probe cooling curves. An identification of their birth sites can constrain their age. For that reason we try to identify the parent associations for four of the so-called Magnificent Seven neutron stars for which proper motion and distance estimates are available. We are tracing back in time each neutron star and possible birth association centre to find close encounters. The associated time of the encounter expresses the kinematic age of the neutron star which can be compared to its characteristic spin-down age. Owing to observational uncertainties in the input data, we use Monte-Carlo simulations and evaluate the outcome of our calculations statistically. RX J1856.5-3754 most probably originated from the Upper Scorpius association about 0.3 Myr ago. RX 0720.4-3125 was either born in the young local association TWA about 0.4 Myr ago or in Tr 10 0.5 Myr in the past. Also RX J1605.3+3249 and RBS 1223 seem to come from a nearby young association such as the Sco-Cen complex or the extended Corona-Australis association. For RBS 1223 also a birth in Sct OB2 is possible. We also give constraints on the observables as well as on the radial velocity of the neutron star. Given the birth association, its age and the flight time of the neutron star, we estimate the mass of the progenitor star. Some of the potential supernovae were located very nearby (<100pc) and thus should have contributed to the 10Be and 60Fe material found in the Earth's crust. In addition we reinvestigate the previously suggested neutron star/ runaway pair PSR B1929+10/ zeta Ophiuchi and conclude that it is very likely that both objects were ejected during the same supernova event.Comment: 14 figures, 13 table
    corecore