833 research outputs found
A Penrose polynomial for embedded graphs
We extend the Penrose polynomial, originally defined only for plane graphs,
to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial
of embedded graphs leads to new identities and relations for the Penrose
polynomial which can not be realized within the class of plane graphs. In
particular, by exploiting connections with the transition polynomial and the
ribbon group action, we find a deletion-contraction-type relation for the
Penrose polynomial. We relate the Penrose polynomial of an orientable
checkerboard colourable graph to the circuit partition polynomial of its medial
graph and use this to find new combinatorial interpretations of the Penrose
polynomial. We also show that the Penrose polynomial of a plane graph G can be
expressed as a sum of chromatic polynomials of twisted duals of G. This allows
us to obtain a new reformulation of the Four Colour Theorem
Evaluations of topological Tutte polynomials
We find new properties of the topological transition polynomial of embedded
graphs, . We use these properties to explain the striking similarities
between certain evaluations of Bollob\'as and Riordan's ribbon graph
polynomial, , and the topological Penrose polynomial, . The general
framework provided by also leads to several other combinatorial
interpretations these polynomials. In particular, we express , ,
and the Tutte polynomial, , as sums of chromatic polynomials of graphs
derived from ; show that these polynomials count -valuations of medial
graphs; show that counts edge 3-colourings; and reformulate the Four
Colour Theorem in terms of . We conclude with a reduction formula for the
transition polynomial of the tensor product of two embedded graphs, showing
that it leads to additional relations among these polynomials and to further
combinatorial interpretations of and .Comment: V2: major revision, several new results, and improved expositio
Interlace Polynomials for Multimatroids and Delta-Matroids
We provide a unified framework in which the interlace polynomial and several
related graph polynomials are defined more generally for multimatroids and
delta-matroids. Using combinatorial properties of multimatroids rather than
graph-theoretical arguments, we find that various known results about these
polynomials, including their recursive relations, are both more efficiently and
more generally obtained. In addition, we obtain several interrelationships and
results for polynomials on multimatroids and delta-matroids that correspond to
new interrelationships and results for the corresponding graphs polynomials. As
a tool we prove the equivalence of tight 3-matroids and delta-matroids closed
under the operations of twist and loop complementation, called vf-safe
delta-matroids. This result is of independent interest and related to the
equivalence between tight 2-matroids and even delta-matroids observed by
Bouchet.Comment: 35 pages, 3 figure
A note on recognizing an old friend in a new place:list coloring and the zero-temperature Potts model
Here we observe that list coloring in graph theory coincides with the
zero-temperature antiferromagnetic Potts model with an external field. We give
a list coloring polynomial that equals the partition function in this case.
This is analogous to the well-known connection between the chromatic polynomial
and the zero-temperature, zero-field, antiferromagnetic Potts model. The
subsequent cross fertilization yields immediate results for the Potts model and
suggests new research directions in list coloring
Separability and the genus of a partial dual
Partial duality generalizes the fundamental concept of the geometric dual of
an embedded graph. A partial dual is obtained by forming the geometric dual
with respect to only a subset of edges. While geometric duality preserves the
genus of an embedded graph, partial duality does not. Here we are interested in
the problem of determining which edge sets of an embedded graph give rise to a
partial dual of a given genus. This problem turns out to be intimately
connected to the separability of the embedded graph. We determine how
separability is related to the genus of a partial dual. We use this to
characterize partial duals of graphs embedded in the plane, and in the real
projective plane, in terms of a particular type of separation of an embedded
graph. These characterizations are then used to determine a local move relating
all partially dual graphs in the plane and in the real projective plane
Feynman graph polynomials
The integrand of any multi-loop integral is characterised after Feynman
parametrisation by two polynomials. In this review we summarise the properties
of these polynomials. Topics covered in this article include among others:
Spanning trees and spanning forests, the all-minors matrix-tree theorem,
recursion relations due to contraction and deletion of edges, Dodgson's
identity and matroids.Comment: 35 pages, references adde
- …
