139 research outputs found

    Habitat complexity in aquatic microcosms affects processes driven by detritivores

    Get PDF
    LF was supported in part by the Spanish Ministry of Economy and Competitiveness through the project SCARCE Consolider-Ingenio CSD2009-00065.Habitat complexity can influence predation rates (e.g. by providing refuge) but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants), in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants); and 3. as the spatial configuration of structures (measured as fractal dimension). The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology). We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, ‘habitat complexity’ by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems.Publisher PDFPeer reviewe

    A meta-analysis of drought effects on litter decomposition in streams

    Get PDF
    Droughts, or severe reductions of water flow, are expected to become more frequent and intense in rivers in many regions under the ongoing climate change scenario. It is therefore important to understand stream ecosystem functioning under drought conditions. We performed a meta-analysis of studies addressing drought effects on litter decomposition in streams (50 studies contributing 261 effect sizes) to quantify overall drought effects on this key ecosystem process and to identify the main moderators controlling these effects. Drought reduced litter decomposition by 43% overall, which can impact energy and matter fluxes along heterotrophic food webs. The magnitude of drought effects on litter decomposition depended on the type of drought (natural drought > human-induced drought), type of decomposer community (microbes + macroinvertebrates > microbes) under natural drought, climate (warm and humid > temperate and Mediterranean) under human-induced drought, and on litter identity. The magnitude of drought effects on litter decomposition also increased with the severity of the drought. The effects of ongoing climate change will likely be strongest in streams with abundant shredders undergoing natural drought, especially if the streams become temporary. The composition of the riparian vegetation may modulate the magnitude of drought effects on litter decomposition, which may have management applications.Open access funding provided by FCT|FCCN (b-on). This study was financed by the Portuguese Foundation for Science and Technology (FCT) through the research project STREAMECO (SFRH/BD/140761/2018) and the strategic projects UIDP/04292/2020 and UIDB/04292/2020 granted to MARE and project LA/P/0069/2020 granted to the Associate Laboratory ARNET, and by the Basque Government (IT1471-22). VF was financially supported by the FCT (CEECIND/02484/2018)

    Indicators of river system hydromorphological character and dynamics: understanding current conditions and guiding sustainable river management

    Get PDF
    The work leading to this paper received funding from the EU’s FP7 programme under Grant Agreement No. 282656 (REFORM). The Indicators were developed within the context of REFORM deliverable D2.1, therefore all partners involved in this deliverable contributed to some extent to their discussion and development

    Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed

    Get PDF
    Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations

    Modelling physical characteristics of river habitats

    Get PDF
    The physical characteristics of river habitats constitute the setting in which fluvial biota dwell and thrive. Determining the spatial and temporal patterns of physical habitat characteristics and the main factors that control them is extremely important to increase the efficiency of river management, conservation, and restoration. This study determined spatial patterns of physical habitat characteristics for Atlantic and Mediterranean rivers in northern Spain and developed a river classification based on hydromorphological characteristics. Data gathered from almost 600 sites following a modified version of the River Habitat Survey methodology were used. In addition to the usual River Habitat Survey variables, the sequence of hydromorphologic units (i.e., areas exhibiting similar hydraulic characteristics, in terms of water velocity and depth), water depths, and widths were recorded. Unmodified reaches were selected computing the Habitat Modification Score. Multiple Linear Regression models were employed to test relationships between Principal Component Analyses that summarized physical river habitat characteristics with ecological relevance and environmental variables (i.e., climate, topography, land cover, and geology) at different spatial scales and used to predict physical habitat attributes for all river reaches. The density of hydromorphologic units, flow turbulence, substrate size, and channel dimensions were able to discriminate river classes within the river network, with topography being the main environmental driver of habitat characteristics (although climate, geology, and land cover were also relevant). This classification scheme could constitute a useful tool to restore physical habitat conditions in modified river reaches.info:eu-repo/semantics/acceptedVersio

    Global CO2 emissions from dry inland waters share common drivers across ecosystems

    Get PDF
    Many inland waters exhibit complete or partial desiccation, or have vanished due to global change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions from these sediments are too scarce to upscale emissions for global estimates or to understand their fundamental drivers. Here, we present the results of a global survey covering 196 dry inland waters across diverse ecosystem types and climate zones. We show that their CO2 emissions share fundamental drivers and constitute a substantial fraction of the carbon cycled by inland waters. CO2 emissions were consistent across ecosystem types and climate zones, with local characteristics explaining much of the variability. Accounting for such emissions increases global estimates of carbon emissions from inland waters by 6% (~0.12 Pg C y−1). Our results indicate that emissions from dry inland waters represent a significant and likely increasing component of the inland waters carbon cycle

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56% 98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events. © 2019 The Authors. Global Change Biology Published by John Wiley and Sons LtdThis work was carried out within the SMART Joint Doctorate Programme “Science for the MAnagement of Rivers and their Tidal systems” funded by the Erasmus Mundus Joint Doctorate Programme of the European Union (http://www.riverscience.it). O.S. was also supported by a grant for a short‐term scientific mission to the University of the Basque Country, Spain, within the COST Action CA15113 (SMIRES, Science and Management of Intermittent Rivers and Ephemeral Streams, www.smires.eu). O.S. is thankful for a partial support from IGB equal opportunity fund for young female scientists and DFG (SU 405/10‐1). F.A. was supported by the Swiss National Science Foundation grants no PP00P3_179089 and PP00P3_150698 and the URPP Global Change and Biodiversity, University of Zurich. S.D.L. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie grant agreement no. 748625. R.F. acknowledges support of the CONICYT/FONDAP/15130015 Chile

    Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter

    Get PDF
    Climate change and human pressures are changing the global distribution and the ex‐ tent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (precon‐ ditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experi‐ mentally simulated, under standard laboratory conditions, rewetting of leaves, river‐ bed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative character‐ istics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dis‐ solved substances during rewetting events (56%–98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contrib‐ uted most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached OM. The opposite pattern was found in the arid zone. Environmental vari‐ ables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached sub‐ stances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying event

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    Os ecossistemas fluviais recebem e processam grandes quantidades de carbono orgânico terrestre, cujo destino depende fortemente da atividade microbiana. A variação e o controle das taxas de processamento, no entanto, são mal caracterizados à escala global. Em resposta, utilizamos uma rede de pesquisa de pares e um ensaio de processamento de carbono altamente padronizado para conduzir um experimento de campo em escala global em mais de 1.000 locais fluviais e ribeirinhos. Descobrimos que os biomas da Terra têm assinaturas distintas de processamento de carbono. O processamento lento é evidente em todas as latitudes, enquanto as taxas rápidas são restritas às latitudes mais baixas. Tanto a taxa média como a variabilidade diminuem com a latitude, sugerindo restrições de temperatura em direção aos pólos e papéis maiores para outros fatores ambientais (por exemplo, carga de nutrientes) em direção ao equador. Estes resultados e dados preparam o terreno para uma “biomonitorização de próxima geração” sem precedentes, estabelecendo linhas de base para ajudar a quantificar os impactos ambientais no funcionamento dos ecossistemas à escala global.River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale
    corecore