2,574 research outputs found
Quantitative single-cell splicing analysis reveals an ‘economy of scale’ filter for gene expression
In eukaryotic cells, splicing affects the fate of each pre-mRNA transcript, helping to determine whether it is ultimately processed into an mRNA, or degraded. The efficiency of splicing plays a key role in gene expression. However, because it depends on the levels of multiple isoforms at the same transcriptional active site (TAS) in the same cell, splicing efficiency has been challenging to measure. Here, we introduce a quantitative single-molecule FISH-based method that enables determination of the absolute abundances of distinct RNA isoforms at individual TASs. Using this method, we discovered that splicing efficiency behaves in an unexpected ‘economy of scale’ manner, increasing, rather than decreasing, with gene expression levels, opposite to a standard enzymatic process. This behavior could result from an observed correlation between splicing efficiency and spatial proximity to nuclear speckles. Economy of scale splicing represents a non-linear filter that amplifies the expression of genes when they are more strongly transcribed. This method will help to reveal the roles of splicing in the quantitative control of gene expression
Tracking Cell Signals in Fluorescent Images
In this paper we present the techniques for tracking cell signal in GFP (Green Fluorescent Protein) images of growing cell colonies. We use such tracking for both data extraction and dynamic modeling of intracellular processes. The techniques are based on optimization of energy functions, which simultaneously determines cell correspondences, while estimating the mapping functions. In addition to spatial mappings such as affine and Thin-Plate Spline mapping, the cell growth and cell division histories must be estimated as well. Different levels of joint optimization are discussed. The most unusual tracking feature addressed in this paper is the possibility of one-to-two correspondences caused by cell division. A novel extended softassign algorithm for solutions of one-to-many correspondences is detailed in this paper. The techniques are demonstrated on three sets of data: growing bacillus Subtillus and e-coli colonies and a developing plant shoot apical meristem. The techniques are currently used by biologists for data extraction and hypothesis formation
Frequency-modulated nuclear localization bursts coordinate gene regulation
In yeast, the transcription factor Crz1 is dephosphorylated and translocates into the nucleus in response to extracellular calcium. Here we show, using time-lapse microscopy, that Crz1 exhibits short bursts of nuclear localization (typically lasting 2 min) that occur stochastically in individual cells and propagate to the expression of downstream genes. Strikingly, calcium concentration controls the frequency, but not the duration, of localization bursts. Using an analytic model, we also show that this frequency modulation of bursts ensures proportional expression of multiple target genes across a wide dynamic range of expression levels, independent of promoter characteristics. We experimentally confirm this theory with natural and synthetic Crz1 target promoters. Another stress-response transcription factor, Msn2, exhibits similar, but largely uncorrelated, localization bursts under calcium stress suggesting that frequency-modulation regulation of localization bursts may be a general control strategy used by the cell to coordinate multi-gene responses to external signals
Dynamical Consequences of Bandpass Feedback Loops in a Bacterial Phosphorelay
Under conditions of nutrient limitation, Bacillus subtilis cells terminally differentiate into a dormant spore state. Progression to sporulation is controlled by a genetic circuit consisting of a phosphorelay embedded in multiple transcriptional feedback loops, which is used to activate the master regulator Spo0A by phosphorylation. These transcriptional regulatory interactions are “bandpass”-like, in the sense that activation occurs within a limited band of Spo0A~P concentrations. Additionally, recent results show that the phosphorelay activation occurs in pulses, in a cell-cycle dependent fashion. However, the impact of these pulsed bandpass interactions on the circuit dynamics preceding sporulation remains unclear. In order to address this question, we measured key features of the bandpass interactions at the single-cell level and analyzed them in the context of a simple mathematical model. The model predicted the emergence of a delayed phase shift between the pulsing activity of the different sporulation genes, as well as the existence of a stable state, with elevated Spo0A activity but no sporulation, embedded within the dynamical structure of the system. To test the model, we used time-lapse fluorescence microscopy to measure dynamics of single cells initiating sporulation. We observed the delayed phase shift emerging during the progression to sporulation, while a re-engineering of the sporulation circuit revealed behavior resembling the predicted additional state. These results show that periodically-driven bandpass feedback loops can give rise to complex dynamics in the progression towards sporulation
Modeling of negative autoregulated genetic networks in single cells
We discuss recent developments in the modeling of negative autoregulated
genetic networks. In particular, we consider the temporal evolution of the
population of mRNA and proteins in simple networks using rate equations. In the
limit of low copy numbers, fluctuation effects become significant and more
adequate modeling is then achieved using the master equation formalism. The
analogy between regulatory gene networks and chemical reaction networks on dust
grains in the interstellar medium is discussed. The analysis and simulation of
complex reaction networks are also considered.Comment: 15 pages, 4 figures. Published in Gen
Diffusion, dimensionality and noise in transcriptional regulation
The precision of biochemical signaling is limited by randomness in the
diffusive arrival of molecules at their targets. For proteins binding to the
specific sites on the DNA and regulating transcription, the ability of the
proteins to diffuse in one dimension by sliding along the length of the DNA, in
addition to their diffusion in bulk solution, would seem to generate a larger
target for DNA binding, consequently reducing the noise in the occupancy of the
regulatory site. Here we show that this effect is largely cancelled by the
enhanced temporal correlations in one dimensional diffusion. With realistic
parameters, sliding along DNA has surprisingly little effect on the physical
limits to the precision of transcriptional regulation.Comment: 8 pages, 2 figure
Topology of biological networks and reliability of information processing
Biological systems rely on robust internal information processing: Survival
depends on highly reproducible dynamics of regulatory processes. Biological
information processing elements, however, are intrinsically noisy (genetic
switches, neurons, etc.). Such noise poses severe stability problems to system
behavior as it tends to desynchronize system dynamics (e.g. via fluctuating
response or transmission time of the elements). Synchronicity in parallel
information processing is not readily sustained in the absence of a central
clock. Here we analyze the influence of topology on synchronicity in networks
of autonomous noisy elements. In numerical and analytical studies we find a
clear distinction between non-reliable and reliable dynamical attractors,
depending on the topology of the circuit. In the reliable cases, synchronicity
is sustained, while in the unreliable scenario, fluctuating responses of single
elements can gradually desynchronize the system, leading to non-reproducible
behavior. We find that the fraction of reliable dynamical attractors strongly
correlates with the underlying circuitry. Our model suggests that the observed
motif structure of biological signaling networks is shaped by the biological
requirement for reproducibility of attractors.Comment: 7 pages, 7 figure
- …
