56 research outputs found
Synaptic Mitochondria in Synaptic Transmission and Organization of Vesicle Pools in Health and Disease
Cell types rich in mitochondria, including neurons, display a high energy demand and a need for calcium buffering. The importance of mitochondria for proper neuronal function is stressed by the occurrence of neurological defects in patients suffering from a great variety of diseases caused by mutations in mitochondrial genes. Genetic and pharmacological evidence also reveal a role of these organelles in various aspects of neuronal physiology and in the pathogenesis of neurodegenerative disorders. Yet the mechanisms by which mitochondria can affect neurotransmission largely remain to be elucidated. In this review we focus on experimental data that suggest a critical function of synaptic mitochondria in the function and organization of synaptic vesicle pools, and in neurotransmitter release during intense neuronal activity. We discuss how calcium handling, ATP production and other mitochondrial mechanisms may influence synaptic vesicle pool organization and synaptic function. Given the link between synaptic mitochondrial function and neuronal communication, efforts toward better understanding mitochondrial biology may lead to novel therapeutic approaches of neurological disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and psychiatric disorders that are at least in part caused by mitochondrial deficits
Chaperoning the synapse—NMNAT protects Bruchpilot from crashing
Maintaining active zone structure is crucial for synaptic function. In this issue of EMBO reports, NMNAT is shown to act as a chaperone that protects the active zone structural protein Bruchpilot from degradation
Development of a Microphysiological Cartilage-on-Chip Platform for Dynamic Biomechanical Stimulation of Three-Dimensional Encapsulated Chondrocytes in Agarose Hydrogels
Abstract
Osteoarthritis (OA) is one of the most prevalent joint diseases globally, characterized by the progressive breakdown of articular cartilage, resulting in chronic pain, stiffness, and loss of joint function. Despite its significant socioeconomic impact, therapeutic options remain limited, largely due to an incomplete understanding of the molecular mechanisms driving cartilage degradation and OA pathogenesis. Recent advances in in vitro modeling have revolutionized joint tissue research, transitioning from simplistic two-dimensional cell cultures to sophisticated three-dimensional (3D) constructs that more accurately mimic the physiological microenvironment of native cartilage. Over the last decade, organ-on-chip technologies have emerged as transformative tools in tissue engineering, offering microphysiological platforms with precise control over biomechanical and biochemical stimuli. These platforms are providing novel insights into tissue responses and disease progression and are increasingly integrated into the early stages of drug screening and development. In this article, we present a detailed experimental protocol for constructing a cartilage-on-chip system capable of delivering controlled dynamic biomechanical stimulation to 3D-encapsulated chondrocytes in an agarose hydrogel matrix. Our protocol, optimized for both bovine and human chondrocytes, begins with Basic Protocol 1, detailing the preparation and injection of cell-laden hydrogels into the microdevice. Basic Protocol 2 describes the application of dynamic mechanical loading using a calibrated pressurized pump. Finally, Basic Protocols 3 and 4 focus on the retrieval of the hydrogel and RNA extraction for downstream molecular analyses. This platform represents a critical advancement for in vitro studies of cartilage biology, enabling more precise modeling of OA pathophysiology and evaluation of experimental therapeutics. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.Abstract
Osteoarthritis (OA) is one of the most prevalent joint diseases globally, characterized by the progressive breakdown of articular cartilage, resulting in chronic pain, stiffness, and loss of joint function. Despite its significant socioeconomic impact, therapeutic options remain limited, largely due to an incomplete understanding of the molecular mechanisms driving cartilage degradation and OA pathogenesis. Recent advances in in vitro modeling have revolutionized joint tissue research, transitioning from simplistic two-dimensional cell cultures to sophisticated three-dimensional (3D) constructs that more accurately mimic the physiological microenvironment of native cartilage. Over the last decade, organ-on-chip technologies have emerged as transformative tools in tissue engineering, offering microphysiological platforms with precise control over biomechanical and biochemical stimuli. These platforms are providing novel insights into tissue responses and disease progression and are increasingly integrated into the early stages of drug screening and development. In this article, we present a detailed experimental protocol for constructing a cartilage-on-chip system capable of delivering controlled dynamic biomechanical stimulation to 3D-encapsulated chondrocytes in an agarose hydrogel matrix. Our protocol, optimized for both bovine and human chondrocytes, begins with Basic Protocol 1, detailing the preparation and injection of cell-laden hydrogels into the microdevice. Basic Protocol 2 describes the application of dynamic mechanical loading using a calibrated pressurized pump. Finally, Basic Protocols 3 and 4 focus on the retrieval of the hydrogel and RNA extraction for downstream molecular analyses. This platform represents a critical advancement for in vitro studies of cartilage biology, enabling more precise modeling of OA pathophysiology and evaluation of experimental therapeutics. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC
Need for speed: Super-resolving the dynamic nanoclustering of syntaxin-1 at exocytic fusion sites
Communication between cells relies on regulated exocytosis, a multi-step process that involves the docking, priming and fusion of vesicles with the plasma membrane, culminating in the release of neurotransmitters and hormones. Key proteins and lipids involved in exocytosis are subjected to Brownian movement and constantly switch between distinct motion states which are governed by short-lived molecular interactions. Critical biochemical reactions between exocytic proteins that occur in the confinement of nanodomains underpin the precise sequence of priming steps which leads to the fusion of vesicles. The advent of super-resolution microscopy techniques has provided the means to visualize individual molecules on the plasma membrane with high spatiotemporal resolution in live cells. These techniques are revealing a highly dynamic nature of the nanoscale organization of the exocytic machinery. In this review, we focus on soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) syntaxin-1, which mediates vesicular fusion. Syntaxin-1 is highly mobile at the plasma membrane, and its inherent speed allows fast assembly and disassembly of syntaxin-1 nanoclusters which are associated with exocytosis. We reflect on recent studies which have revealed the mechanisms regulating syntaxin-1 nanoclustering on the plasma membrane and draw inferences on the effect of synaptic activity, phosphoinositides, N-ethylmaleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP) and SNARE complex assembly on the dynamic nanoscale organization of syntaxin-1
Systematic Mutational Analysis of the Intracellular Regions of Yeast Gap1 Permease
The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g. ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER).Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway
A growing number of yeast and mammalian plasma membrane proteins are reported to be modified with K63-linked ubiquitin (Ub) chains. However, the relative importance of this modification versus monoubiquitylation in endocytosis, Golgi to endosome traffic, and sorting into the multivesicular body (MVB) pathway remains unclear. In this study, we show that K63-linked ubiquitylation of the Gap1 permease is essential for its entry into the MVB pathway. Carboxypeptidase S also requires modification with a K63-Ub chain for correct MVB sorting. In contrast, monoubiquitylation of a single target lysine of Gap1 is a sufficient signal for its internalization from the cell surface, and Golgi to endosome transport of the permease requires neither its ubiquitylation nor the Ub-binding GAT (Gga and Tom1) domain of Gga (Golgi localizing, gamma-ear containing, ARF binding) adapter proteins, the latter being crucial for subsequent MVB sorting of the permease. Our data reveal that K63-linked Ub chains act as a specific signal for MVB sorting, providing further insight into the Ub code of membrane protein trafficking
Potential human transmission of amyloid β pathology: surveillance and risks
Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid β might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid β can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid β transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically
Role of sphingolipids and polyubiquitin chains in intracellular trafficking of the yeast GAP1 permease
In the past fifteen years, ubiquitin has emerged as a central regulator of membrane protein trafficking. In this context, covalent attachment of this small protein to lysine residues of cargo proteins, a reversible modification termed ubiquitylation, provides a signal for their targeting to the vacuolar/lysosomal lumen where they are degraded, both in yeast and higher eukaryotes. Ubiquitylation is also used as a means of controlling the function of specific proteins in several trafficking machineries. The role of lipids - and in particular of membrane domains named lipid rafts - in controlling the intracellular trafficking of membrane proteins has also been the subject of intense investigation in recent years.One of the membrane proteins of the yeast Saccharomyces cerevisiae whose intracellular trafficking has been extensively studied is the general amino acid permease Gap1. Yet some aspects of the function of ubiquitin in the nitrogen-dependent control of this protein remain controversial. Moreover, the potential role of lipid rafts in regulating the functional properties and traffic of the Gap1 permease had not been investigated before this thesis work. The first part of our work readdresses the role of Gap1 ubiquitylation, and more precisely of the modification of the permease with polyubiquitin chains linked through the lysine 63 of ubiquitin, in controlling the fate of this protein in the secretory pathway. Our observations indicate that nitrogen-induced ubiquitylation of newly synthesised Gap1 occurs in the trans-Golgi complex. However, contrary to the generally accepted view, this modification is not necessary for the permease to exit this compartment en route to the endosome but only for its subsequent targeting to the vacuolar lumen via the multivesicular body (MVB) pathway. Our results also provide evidence that K63-linked polyubiquitylation is important mostly at the late endosomal level, for proper sorting of Gap1 into the MVB pathway, whether the permease comes from the cell surface by endocytosis or directly from the secretory pathway. In the second part of this work, we present a set of data providing novel insights into the controversial question of the exact nature of lipid rafts in yeast. We first showed that the Gap1 permease is associated with detergent-resistant membranes (DRMs) - the proposed biochemical equivalent of lipid rafts - when it is located at the cell surface. Our data further suggest that this may be true for most if not all yeast plasma membrane proteins. Moreover, we found that Gap1 production must be coupled to de novo synthesis of sphingolipids (SLs), major constituents of rafts, in order for the newly synthesised permease to be correctly folded, active, associated with DRMs, and stable at the cell surface. We propose a model where Gap1 would associate with newly synthesised SLs during its biogenesis and/or secretion, this association shaping the permease into its native conformation and ensuring its incorporation and stabilisation in specific lipid domains at the plasma membrane. Failure of Gap1 to acquire this lipidic microenvironment in turns leads to its ubiquitin-dependent degradation by a quality-control mechanism. This model might be valid for many other plasma membrane proteins and might account for their lateral distribution between distinct membrane domains. Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
Does prior exposure to uranium protect future generations of Arabidopsis thaliana plants to metal stress?
Role of sphingolipids and polyubiquitin chains in intracellular trafficking of the yeast GAP1 permease
In the past fifteen years, ubiquitin has emerged as a central regulator of membrane protein trafficking. In this context, covalent attachment of this small protein to lysine residues of cargo proteins, a reversible modification termed ubiquitylation, provides a signal for their targeting to the vacuolar/lysosomal lumen where they are degraded, both in yeast and higher eukaryotes. Ubiquitylation is also used as a means of controlling the function of specific proteins in several trafficking machineries. The role of lipids - and in particular of membrane domains named lipid rafts - in controlling the intracellular trafficking of membrane proteins has also been the subject of intense investigation in recent years.One of the membrane proteins of the yeast Saccharomyces cerevisiae whose intracellular trafficking has been extensively studied is the general amino acid permease Gap1. Yet some aspects of the function of ubiquitin in the nitrogen-dependent control of this protein remain controversial. Moreover, the potential role of lipid rafts in regulating the functional properties and traffic of the Gap1 permease had not been investigated before this thesis work. The first part of our work readdresses the role of Gap1 ubiquitylation, and more precisely of the modification of the permease with polyubiquitin chains linked through the lysine 63 of ubiquitin, in controlling the fate of this protein in the secretory pathway. Our observations indicate that nitrogen-induced ubiquitylation of newly synthesised Gap1 occurs in the trans-Golgi complex. However, contrary to the generally accepted view, this modification is not necessary for the permease to exit this compartment en route to the endosome but only for its subsequent targeting to the vacuolar lumen via the multivesicular body (MVB) pathway. Our results also provide evidence that K63-linked polyubiquitylation is important mostly at the late endosomal level, for proper sorting of Gap1 into the MVB pathway, whether the permease comes from the cell surface by endocytosis or directly from the secretory pathway. In the second part of this work, we present a set of data providing novel insights into the controversial question of the exact nature of lipid rafts in yeast. We first showed that the Gap1 permease is associated with detergent-resistant membranes (DRMs) - the proposed biochemical equivalent of lipid rafts - when it is located at the cell surface. Our data further suggest that this may be true for most if not all yeast plasma membrane proteins. Moreover, we found that Gap1 production must be coupled to de novo synthesis of sphingolipids (SLs), major constituents of rafts, in order for the newly synthesised permease to be correctly folded, active, associated with DRMs, and stable at the cell surface. We propose a model where Gap1 would associate with newly synthesised SLs during its biogenesis and/or secretion, this association shaping the permease into its native conformation and ensuring its incorporation and stabilisation in specific lipid domains at the plasma membrane. Failure of Gap1 to acquire this lipidic microenvironment in turns leads to its ubiquitin-dependent degradation by a quality-control mechanism. This model might be valid for many other plasma membrane proteins and might account for their lateral distribution between distinct membrane domains. Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
- …
