1,959 research outputs found

    Random projections and the optimization of an algorithm for phase retrieval

    Full text link
    Iterative phase retrieval algorithms typically employ projections onto constraint subspaces to recover the unknown phases in the Fourier transform of an image, or, in the case of x-ray crystallography, the electron density of a molecule. For a general class of algorithms, where the basic iteration is specified by the difference map, solutions are associated with fixed points of the map, the attractive character of which determines the effectiveness of the algorithm. The behavior of the difference map near fixed points is controlled by the relative orientation of the tangent spaces of the two constraint subspaces employed by the map. Since the dimensionalities involved are always large in practical applications, it is appropriate to use random matrix theory ideas to analyze the average-case convergence at fixed points. Optimal values of the gamma parameters of the difference map are found which differ somewhat from the values previously obtained on the assumption of orthogonal tangent spaces.Comment: 15 page

    Dynamics of immersed molecules in superfluids

    Full text link
    The dynamics of a molecule immersed in a superfluid medium are considered. Results are derived using a classical hydrodynamic approach followed by canonical quantization. The classical model, a rigid body immersed in incompressible fluid, permits a thorough analysis; its effective Hamiltonian generalizes the usual rigid-rotor Hamiltonian. In contrast to the free rigid rotor, the immersed body is shown to have chaotic dynamics. Quantization of the classical model leads to new and experimentally verifiable features. It is shown, for instance, that chiral molecules can behave as "quantum propellers": the rotational-translational coupling induced by the superfluid leads to a nonzero linear momentum in the ground state. Hydrogen peroxide is a strong candidate for experimental detection of this effect. The signature is a characteristic splitting of rotational absorption lines. The 1_{01} --> 1_{10} line in hydrogen peroxide, for example, is predicted to split into three lines separated by as much as 0.01 cm^{-1}, which is about the experimental linewidth.Comment: 10 pages, 3 figure

    Dense packing crystal structures of physical tetrahedra

    Full text link
    We present a method for discovering dense packings of general convex hard particles and apply it to study the dense packing behavior of a one-parameter family of particles with tetrahedral symmetry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all the way to the sphere. Thus, we also connect the two well studied problems of sphere packing and tetrahedron packing on a single axis. Our numerical results uncover a rich optimal-packing behavior, compared to that of other continuous families of particles previously studied. We present four structures as candidates for the optimal packing at different values of the parameter, providing an atlas of crystal structures which might be observed in systems of nano-particles with tetrahedral symmetry

    Relative importance of Deep Creek Lake to other areas in respect to certain recreational and economic aspects

    Get PDF
    Presents a review of the recreational values and economic importance of Maryland Fishing waters. (PDF contains 5 pages

    Scattering-free plasmonic optics with anisotropic metamaterials

    Full text link
    We develop an approach to utilize anisotropic metamaterials to solve one of the fundamental problems of modern plasmonics -- parasitic scattering of surface waves into free-space modes, opening the road to truly two-dimensional plasmonic optics. We illustrate the developed formalism on examples of plasmonic refractor and plasmonic crystal, and discuss limitations of the developed technique and its possible applications for sensing and imaging structures, high-performance mode couplers, optical cloaking structures, and dynamically reconfigurable electro-plasmonic circuits

    Sub-diffraction light propagation in fibers with anisotropic dielectric cores

    Get PDF
    We present a detailed study of light propagation in waveguides with anisotropic metamaterial cores. We demonstrate that in contrast to conventional optical fibers, our structures support free-space-like propagating modes even when the waveguide radius is much smaller than the wavelength. We develop analytical formalism to describe mode structure and propagation in strongly anisotropic systems and study the effects related to waveguide boundaries and material composition

    Recursion and Path-Integral Approaches to the Analytic Study of the Electronic Properties of C60C_{60}

    Full text link
    The recursion and path-integral methods are applied to analytically study the electronic structure of a neutral C60C_{60} molecule. We employ a tight-binding Hamiltonian which considers both the ss and pp valence electrons of carbon. From the recursion method, we obtain closed-form {\it analytic} expressions for the π\pi and σ\sigma eigenvalues and eigenfunctions, including the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) states, and the Green's functions. We also present the local densities of states around several ring clusters, which can be probed experimentally by using, for instance, a scanning tunneling microscope. {}From a path-integral method, identical results for the energy spectrum are also derived. In addition, the local density of states on one carbon atom is obtained; from this we can derive the degree of degeneracy of the energy levels.Comment: 19 pages, RevTex, 6 figures upon reques

    Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields

    Full text link
    Quasicrystals provide a fascinating class of materials with intriguing properties. Despite a strong potential for numerous technical applications, the conditions under which quasicrystals form are still poorly understood. Currently, it is not clear why most quasicrystals hold 5- or 10-fold symmetry but no single example with 7 or 9-fold symmetry has ever been observed. Here we report on geometrical constraints which impede the formation of quasicrystals with certain symmetries in a colloidal model system. Experimentally, colloidal quasicrystals are created by subjecting micron-sized particles to two-dimensional quasiperiodic potential landscapes created by n=5 or seven laser beams. Our results clearly demonstrate that quasicrystalline order is much easier established for n = 5 compared to n = 7. With increasing laser intensity we observe that the colloids first adopt quasiperiodic order at local areas which then laterally grow until an extended quasicrystalline layer forms. As nucleation sites where quasiperiodicity originates, we identify highly symmetric motifs in the laser pattern. We find that their density strongly varies with n and surprisingly is smallest exactly for those quasicrystalline symmetries which have never been observed in atomic systems. Since such high symmetry motifs also exist in atomic quasicrystals where they act as preferential adsorption sites, this suggests that it is indeed the deficiency of such motifs which accounts for the absence of materials with e.g. 7-fold symmetry

    Nanowire metamaterials with extreme optical anisotropy

    Full text link
    We study perspectives of nanowire metamaterials for negative-refraction waveguides, high-performance polarizers, and polarization-sensitive biosensors. We demonstrate that the behavior of these composites is strongly influenced by the concentration, distribution, and geometry of the nanowires, derive an analytical description of electromagnetism in anisotropic nanowire-based metamaterials, and explore the limitations of our approach via three-dimensional numerical simulations. Finally, we illustrate the developed approach on the examples of nanowire-based high energy-density waveguides and non-magnetic negative index imaging systems with far-field resolution of one-sixth of vacuum wavelength.Comment: Updated version; accepted to Appl.Phys.Let
    corecore