545 research outputs found
Identifying and Indexing Icosahedral Quasicrystals from Powder Diffraction Patterns
We present a scheme to identify quasicrystals based on powder diffraction
data and to provide a standardized indexing. We apply our scheme to a large
catalog of powder diffraction patterns, including natural minerals, to look for
new quasicrystals. Based on our tests, we have found promising candidates
worthy of further exploration.Comment: 4 pages, 1 figur
Quantum spin models with exact dimer ground states
Inspired by the exact solution of the Majumdar-Ghosh model, a family of
one-dimensional, translationally invariant spin hamiltonians is constructed.
The exchange coupling in these models is antiferromagnetic, and decreases
linearly with the separation between the spins. The coupling becomes
identically zero beyond a certain distance. It is rigorously proved that the
dimer configuration is an exact, superstable ground state configuration of all
the members of the family on a periodic chain. The ground state is two-fold
degenerate, and there exists an energy gap above the ground state. The
Majumdar-Ghosh hamiltonian with two-fold degenerate dimer ground state is just
the first member of the family.
The scheme of construction is generalized to two and three dimensions, and
illustrated with the help of some concrete examples. The first member in two
dimensions is the Shastry-Sutherland model. Many of these models have
exponentially degenerate, exact dimer ground states.Comment: 10 pages, 8 figures, revtex, to appear in Phys. Rev.
Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns
We reconstructed the 3D Fourier intensity distribution of mono-disperse
prolate nano-particles using single-shot 2D coherent diffraction patterns
collected at DESY's FLASH facility when a bright, coherent, ultrafast X-ray
pulse intercepted individual particles of random, unmeasured orientations. This
first experimental demonstration of cryptotomography extended the
Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured
fluctuations in photon fluence and loss of data due to saturation or background
scatter. This work is an important step towards realizing single-shot
diffraction imaging of single biomolecules.Comment: 4 pages, 4 figure
Green's function approach to the magnetic properties of the kagome antiferromagnet
The Heisenberg antiferromagnet is studied on the kagom\'e lattice by
using a Green's function method based on an appropriate decoupling of the
equations of motion. Thermodynamic properties as well as spin-spin correlation
functions are obtained and characterize this system as a two-dimensional
quantum spin liquid. Spin-spin correlation functions decay exponentially with
distance down to low temperature and the calculated missing entropy at T=0 is
found to be . Within the present scheme, the specific heat exhibits
a single peak structure and a dependence at low temperature.Comment: 6 (two-column revtex4) pages, 5 ps figures. Submitted to Phys. Rev.
Magneto-thermodynamics of the spin-1/2 Kagome antiferromagnet
In this paper, we use a new hybrid method to compute the thermodynamic
behavior of the spin-1/2 Kagome antiferromagnet under the influence of a large
external magnetic field. We find a T^2 low-temperature behavior and a very low
sensitivity of the specific heat to a strong external magnetic field. We
display clear evidence that this low temperature magneto-thermal effect is
associated to the existence of low-lying fluctuating singlets, but also that
the whole picture (T^2 behavior of Cv and thermally activated spin
susceptibility) implies contribution of both non magnetic and magnetic
excitations. Comparison with experiments is made.Comment: 4 pages, LaTeX 2.09 and RevTeX with 3 figures embedded in the text.
Version to appear in Phys. Rev. Let
The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields
We consider an "elastic" version of the statistical mechanical monomer-dimer
problem on the n-dimensional integer lattice. Our setting includes the
classical "rigid" formulation as a special case and extends it by allowing each
dimer to consist of particles at arbitrarily distant sites of the lattice, with
the energy of interaction between the particles in a dimer depending on their
relative position. We reduce the free energy of the elastic dimer-monomer (EDM)
system per lattice site in the thermodynamic limit to the moment Lyapunov
exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value
and covariance function are the Boltzmann factors associated with the monomer
energy and dimer potential. In particular, the classical monomer-dimer problem
becomes related to the MLE of a moving average GRF. We outline an approach to
recursive computation of the partition function for "Manhattan" EDM systems
where the dimer potential is a weighted l1-distance and the auxiliary GRF is a
Markov random field of Pickard type which behaves in space like autoregressive
processes do in time. For one-dimensional Manhattan EDM systems, we compute the
MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a
compact transfer operator on a Hilbert space which is related to the
annihilation and creation operators of the quantum harmonic oscillator and also
recast it as the eigenvalue problem for a pantograph functional-differential
equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue
of DCDS-
Probing the dynamics of quasicrystal growth using synchrotron live imaging
The dynamics of quasicrystal growth remains an unsolved problem in condensed
matter. By means of synchrotron live imaging, facetted growth proceeding by the
tangential motion of ledges at the solid-melt interface is clearly evidenced
all along the solidification of icosahedral AlPdMn quasicrystals. The effect of
interface kinetics is significant so that nucleation and free growth of new
facetted grains occur in the melt when the solidification rate is increased.
The evolution of these grains is explained in details, which reveals the
crucial role of aluminum rejection, both in the poisoning of grain growth and
driving fluid flow
Low-energy sector of the S=1/2 Kagome antiferromagnet
Starting from a modified version of the the S=1/2 Kagome antiferromagnet to
emphasize the role of elementary triangles, an effective Hamiltonian involving
spin and chirality variables is derived. A mean-field decoupling that retains
the quantum nature of these variables is shown to yield a Hamiltonian that can
be solved exactly, leading to the following predictions: i) The number of low
lying singlet states increase with the number of sites N like 1.15 to the power
N; ii) A singlet-triplet gap remains in the thermodynamic limit; iii) Spinons
form boundstates with a small binding energy. By comparing these properties
with those of the regular Kagome lattice as revealed by numerical experiments,
we argue that this description captures the essential low energy physics of
that model.Comment: 4 pages including 3 figure
Homogenization of nonlocal wire metamaterial via a renormalization approach
It is well known that defining a local refractive index for a metamaterial
requires that the wavelength be large with respect to the scale of its
microscopic structure (generally the period). However, the converse does not
hold. There are simple structures, such as the infinite, perfectly conducting
wire medium, which remain non-local for arbitrarily large wavelength-to-period
ratios. In this work we extend these results to the more realistic and relevant
case of finite wire media with finite conductivity. In the quasi-static regime
the metamaterial is described by a non-local permittivity which is obtained
analytically using a two-scale renormalization approach. Its accuracy is tested
and confirmed numerically via full vector 3D finite element calculations.
Moreover, finite wire media exhibit large absorption with small reflection,
while their low fill factor allows considerable freedom to control other
characteristics of the metamaterial such as its mechanical, thermal or chemical
robustness.Comment: 8 pages on two columns, 7 figures, submitted to Phys. Rev.
- …
