26 research outputs found

    Development of the nervous system in Solenogastres (Mollusca) reveals putative ancestral spiralian features

    Get PDF
    Background: The Solenogastres (or Neomeniomorpha) are a taxon of aplacophoran molluscs with contentious phylogenetic placement. Since available developmental data on non-conchiferan (that is, aculiferan) molluscs mainly stem from polyplacophorans, data on aplacophorans are needed to clarify evolutionary questions concerning the morphological features of the last common ancestor (LCA) of the Aculifera and the entire Mollusca. We therefore investigated the development of the nervous system in two solenogasters, Wirenia argentea and Gymnomenia pellucida, using immunocytochemistry and electron microscopy. Results: Nervous system formation starts simultaneously from the apical and abapical pole of the larva with the development of a few cells of the apical organ and a posterior neurogenic domain. A pair of neurite bundles grows out from both the neuropil of the apical organ and the posterior neurogenic domain. After their fusion in the region of the prototroch, which is innervated by an underlying serotonin-like immunoreactive (−LIR) plexus, the larva exhibits two longitudinal neurite bundles - the future lateral nerve cords. The apical organ in its fully developed state exhibits approximately 8 to 10 flask-shaped cells but no peripheral cells. The entire ventral nervous system, which includes a pair of longitudinal neurite bundles (the future ventral nerve cords) and a serotonin-LIR ventromedian nerve plexus, appears simultaneously and is established after the lateral nervous system. During metamorphosis the apical organ and the prototrochal nerve plexus are lost. Conclusions: The development of the nervous system in early solenogaster larvae shows striking similarities to other spiralians, especially polychaetes, in exhibiting an apical organ with flask-shaped cells, a single pair of longitudinal neurite bundles, a serotonin-LIR innervation of the prototroch, and formation of these structures from an anterior and a posterior neurogenic domain. This provides evidence for an ancestral spiralian pattern of early nervous system development and a LCA of the Spiralia with a single pair of nerve cords. In later nervous system development, however, the annelids deviate from all other spiralians including solenogasters in forming a posterior growth zone, which initiates teloblastic growth. Since this mode of organogenesis is confined to annelids, we conclude that the LCA of both molluscs and spiralians was unsegmented

    Aplacophoran mollusks evolved from ancestors with polyplacophoran-like features

    No full text
    Mollusca is an animal phylum with vast morphological diversity and includes worm-shaped aplacophorans, snails, bivalves, and the complex cephalopods [1]. The interrelationships of these class-level taxa are still contentious [2 and 3], but recent phylogenomic analyses suggest a dichotomy at the base of Mollusca, resulting in a monophyletic Aculifera (comprising the shell-less, sclerite-bearing aplacophorans and the eight-shelled polyplacophorans) and Conchifera (all other, primarily univalved groups) [4 and 5]. The Aculifera concept has recently gained support via description of the fossil Kulindroplax, which shows both aplacophoran- and polyplacophoran-like features and suggests that the aplacophorans originated from a shelled ancestor [ 6], but the overall morphology of the last common aculiferan ancestor remains obscure. Here we show that larvae of the aplacophoran Wirenia argentea have several sets of muscles previously known only from polyplacophoran mollusks. Most of these are lost during metamorphosis, and we interpret them as ontogenetic remnants of an ancestor with a complex, polyplacophoran-like musculature. Moreover, we find that the first seven pairs of dorsoventral muscles develop synchronously in Wirenia, similar to juvenile polyplacophorans [ 7], which supports the conclusions based on the seven-shelled Kulindroplax. Accordingly, we argue that the simple body plan of recent aplacophorans is the result of simplification and does not represent a basal molluscan condition.publishedVersio

    Aplacophoran Mollusks Evolved from Ancestors with Polyplacophoran-like Features

    Get PDF
    SummaryMollusca is an animal phylum with vast morphological diversity and includes worm-shaped aplacophorans, snails, bivalves, and the complex cephalopods [1]. The interrelationships of these class-level taxa are still contentious [2, 3], but recent phylogenomic analyses suggest a dichotomy at the base of Mollusca, resulting in a monophyletic Aculifera (comprising the shell-less, sclerite-bearing aplacophorans and the eight-shelled polyplacophorans) and Conchifera (all other, primarily univalved groups) [4, 5]. The Aculifera concept has recently gained support via description of the fossil Kulindroplax, which shows both aplacophoran- and polyplacophoran-like features and suggests that the aplacophorans originated from a shelled ancestor [6], but the overall morphology of the last common aculiferan ancestor remains obscure. Here we show that larvae of the aplacophoran Wirenia argentea have several sets of muscles previously known only from polyplacophoran mollusks. Most of these are lost during metamorphosis, and we interpret them as ontogenetic remnants of an ancestor with a complex, polyplacophoran-like musculature. Moreover, we find that the first seven pairs of dorsoventral muscles develop synchronously in Wirenia, similar to juvenile polyplacophorans [7], which supports the conclusions based on the seven-shelled Kulindroplax. Accordingly, we argue that the simple body plan of recent aplacophorans is the result of simplification and does not represent a basal molluscan condition

    Fixierungssysteme für ein künstliches vorderes Kreuzband

    No full text
    Im Rahmen dieser Untersuchungen wurden Fixationssysteme für einen seidenen Kreuzbandersatz, welcher als Gerüst zur Zellbesiedelung dient, entwickelt und die mechanischen Eigenschaften des Transplantats untersucht. Die Zugprüfungen an degummierten, nassen Seidenscaffolds ergaben, dass diese hinsichtlich Bruchkraft und Steifigkeit dem humanen vorderen Kreuzband ähnlich sind. Es wurden maximal übertragbare Kräfte im Bereich von 1945 bis 2619 N beobachtet. Die Steifigkeiten lagen dabei in einem Bereich von 238 und 393 N/mm.Für dieses Transplantat wurden verschiedene Fixationen, für die tibiale als auch für die femorale gelenknahe Verankerung, mittels Dübeltechnik realisiert. Das Verankerungsprinzip beruht darauf, dass ein Bauteil zwischen zwei Schalen geschlagen wird, wodurch diese orthogonal zur Einschlagrichtung auseinandergedrückt werden und somit das Seidenscaffold so stark gegen die Tunnelinnenwand drücken, dass eine ausreichende initiale Ausreissfestigkeit erzielt werden kann. Die im CAD konstruierten Systeme wurden als Prototypen in Photopolymeren, mittels des 3D-Druckers Objet Eden 260, gebaut. Es wurden auch Versuche unternommen einzelne Systeme in Keramik, mittels lithographiebasierter generativer Fertigung, herzustellen. In eigenen Versuchen wurden die verschiedenen Fixierungen an ex-vivo Schafsknochen auf ihre mechanische Belastbarkeit hin evaluiert. Nach den durchgeführten zyklischen Belastungen wurde die Kraft auf die Systeme bis zum Versagen der Konstruktion gesteigert, wodurch neben der maximalen Ausreisskraft auch der permanente Verankerungsverlust untersucht werden konnte

    From complex to simple: myogenesis in an aplacophoran mollusk reveals key traits in aculiferan evolution

    Get PDF
    Background Recent studies suggest a bifurcation at the base of Mollusca, resulting in the primarily single-shelled Conchifera (Bivalvia, Gastropoda, Scaphopoda, Monoplacophora, Cephalopoda) and the spicule-bearing Aculifera (Polyplacophora, Neomeniomorpha, Chaetodermomorpha). A recent study revealed a complex larval musculature exclusively shared by Neomeniomorpha and Polyplacophora, supporting a close relationship of both taxa. However, the ontogenetic transition from the complex larval to the simple adult neomeniomorph musculature, which mainly consists of a three-layered body-wall musculature and serially iterated dorsoventral muscles, remains unknown. To close this gap in knowledge, we studied remodeling of the larval musculature during metamorphosis in the neomeniomorph Wirenia argentea. A comparative analysis with a novel data set of a polyplacophoran, Leptochiton asellus, allows us to infer the morphology of the last common ancestor of Aculifera and the evolution of its subclades therefrom. Results The complex larval musculature of Wirenia argentea persists through metamorphosis and becomes modified to form two of the three muscle layers of the adult body wall. The innermost longitudinal layer of the three-layered body wall musculature is generated by transformation and expansion of distinct larval longitudinal muscle bundles. The larval ventrolateral muscle strands are remodeled and eventually become the most ventral part of the adult longitudinal layer of the body wall musculature. The paired larval enrolling muscle forms the lateral parts and the former rectus muscle is destined to become the most dorsal part of the longitudinal layer of the body wall musculature. The transient ventromedian muscle is lost during postmetamorphic development. Conclusions Postmetamorphic remodeling in W. argentea supports the hypothesis of a complex myoanatomy rather than a three-layered body wall musculature at the base of Aculifera, and thus argues against homology of the body wall musculature of adult Neomeniomorpha and other potential molluscan sister groups. Our data show that the neomeniomorph body wall musculature is a derived condition and not an aculiferan or molluscan plesiomorphy

    Brain regionalization genes are co-opted into shell field patterning in Mollusca

    No full text
    AbstractThe ‘brain regionalization genes’ Six3/6, Otx, Pax2/5/8, Gbx, and Hox1 are expressed in a similar fashion in the deuterostome, ecdysozoan, and the cephalopod brain, questioning whether this holds also true for the remaining Mollusca. We investigated developmental Gbx-expression in representatives of both molluscan sister groups, the Aculifera and Conchifera. Gbx is expressed in the posterior central nervous system of an aculiferan polyplacophoran and solenogaster but not in a conchiferan bivalve suggesting that Gbx, together with Six3/6, Otx, Pax2/5/8, and Hox1, is involved in central nervous system regionalization as reported for other bilaterians. Gbx is, however, also expressed in the anterior central nervous system, i.e. the anlagen of the cerebral ganglia, in the solenogaster, a condition not reported for any other bilaterian so far. Strikingly, all Gbx-orthologs and the other ‘posterior brain regionalization genes’ such as Pax2/5/8 and Hox1 are expressed in the mantle that secretes shell(s) and spicules of mollusks (except cephalopods). In bivalves, the ancestral condition has even been lost, with Gbx and Pax2/5/8 not being expressed in the developing central nervous system anymore. This suggests an additional role in the formation of the molluscan shell field(s) and spicule-bearing cells, key features of mollusks.</jats:p

    Lugol’s solution but not formaldehyde affects bone microstructure and bone mineral density parameters at the insertion site of the rotator cuff in rats

    No full text
    AbstractBackgroundThis study aimed to investigate whether rodent shoulder specimens fixed in formaldehyde for histological and histomorphometric investigations and specimens stained using Lugol’s solution for soft tissue visualization by micro-computed tomography (microCT) are still eligible to be used for bone architecture analysis by microCT.MethodsIn this controlled laboratory study, 11 male Sprague-Dawley rats were used. After sacrifice and exarticulation both shoulders of healthy rats were assigned into three groups: (A) control group (n= 2); (B) formaldehyde group (n= 4); (C) Lugol group (n= 5). Half of the specimens of groups B and C were placed in a 4% buffered formaldehyde or Lugol’s solution for 24 h, whereas the contralateral sides and all specimens of group A were stored without any additives. MicroCT of both sides performed in all specimens focused on bone mineral density (BMD) and bone microstructure parameters.ResultsBMD measurements revealed higher values in specimens after placement in Lugol’s solution (p&lt; 0.05). Bone microstructure analyses showed increased BV/TV and Tb.Th values in group C (p&lt; 0.05). Specimens of group C resulted in clearly decreased Tb.Sp values (p&lt; 0.05) in comparison to the control group. Formaldehyde fixation showed minimally altered BMD and bone microstructure measurements without reaching any significance.ConclusionsMicroCT scans of bone structures are recommended to be conducted natively and immediately after euthanizing rats. MicroCT scans of formaldehyde-fixed specimens must be performed with caution due to a possible slight shift of absolute values of BMD and bone microstructure. Bone analysis of specimens stained by Lugol’s solution cannot be recommended.</jats:sec

    Improved biomechanics in experimental chronic rotator cuff repair after shockwaves is not reflected by bone microarchitecture.

    No full text
    PurposeThe aim of this study was to investigate the effect of extracorporeal shockwave therapy (ESWT) on bone microstructure as well as the bone-tendon-interface and the musculo-tendinous transition zone to explain the previously shown improved biomechanics in a degenerative rotator cuff tear animal model. This study hypothesized that biomechanical improvements related to ESWT are a result of improved bone microstructure and muscle tendon properties.MethodsIn this controlled laboratory study unilateral supraspinatus (SSP) tendon detachment was performed in 48 male Sprague-Dawley rats. After a degeneration period of three weeks, SSP tendon was reconstructed transosseously. Rats were randomly assigned into three groups (n = 16 per group): control (noSW); intraoperative shockwave treatment (IntraSW); intra- and postoperative shockwave treatment (IntraPostSW). Eight weeks after SSP repair, all rats were sacrificed and underwent bone microstructure analysis as well as histological and immunohistochemical analyses.ResultsWith exception of cortical porosity at the tendon area, bone microstructure analyses revealed no significant differences between the three study groups regarding cortical and trabecular bone parameters. Cortical Porosity at the Tendon Area was lowest in the IntraPostSW (p≤0.05) group. Histological analyses showed well-regenerated muscle and tendon structures in all groups. Immunohistochemistry detected augmented angiogenesis at the musculo-tendinous transition zone in both shockwave groups indicated by CD31 positive stained blood vessels.ConclusionIn conclusion, bone microarchitecture changes are not responsible for previously described improved biomechanical results after shockwave treatment in rotator cuff repair in rodents. Immunohistochemical analysis showed neovascularization at the musculo-tendinous transition zone within ESWT-treated animals. Further studies focusing on neovascularization at the musculo-tendinous transition zone are necessary to explain the enhanced biomechanical and functional properties observed previously.Clinical relevanceIn patients treated with a double-row SSP tendon repair, an improvement in healing through ESWT, especially in this area, could prevent a failure of the medial row, which is considered a constantly observed tear pattern
    corecore