11 research outputs found

    Applications of Laser-Assisted Bioprinting to corneal stroma engineering

    No full text
    La bioimpression assistée par laser (LAB) permet de positionner des gouttesde cellules avec une précision micrométrique. Il est ainsi possible de donner uneorganisation initiale aux cellules au sein d’une structure tissulaire 3D. Notre objectif estd’utiliser le LAB pour reproduire l’histo-architecture du stroma cornéen. Le stroma cornéenest un assemblage transparent de lamelles d’une épaisseur totale de 500 μm. Au sein dechaque lamelle, les fibres de collagène ont une même direction, un même diamètre et sontrégulièrement espacées grâce à la présence de protéoglycanes spécifiques du stromacornéen. Pour reproduire cette organisation, nous avons fait l’hypothèse qu’en alignant desfibroblastes du stroma sur un hydrogel de collagène à l’aide du LAB, il serait possibled’aligner les fibres de collagène dans la même direction. Du fait que les cellules impriméessont vivantes et dynamiques, le motif cellulaire initialement imprimé est soumis à desprocessus d’auto-organisation. Il a donc fallu déterminer les paramètres, à la foisd’impression et de culture, permettant d’obtenir de façon reproductible des alignements decellules stables dans le temps. Grâce à la microscopie à génération de secondeharmonique, le remaniement des fibres de collagène par les fibroblastes cornéens a pu êtreobservé. La direction des fibres de collagène correspond à celle de l’alignement cellulaire.En imprimant les fibroblastes de cornée sur des couches successives de collagène, noussommes parvenus à reproduire les variations de direction des fibres de collagène d’unelamelle à l’autre qui sont observées dans le stroma cornéen natif.Laser-Assisted Bioprinting allows positioning of cell droplets with amicrometric precision. It is thus possible to give an initial organization to the cells within a3D tissue structure. Our objective is to use LAB to reproduce the corneal stroma histoarchitecture.The corneal stroma is a transparent assembly of lamellae with a totalthickness of 500 μm. Within each lamella, collagen fibers have the same direction, thesame diameter, and a regular spacing thanks to the presence of proteoglycans which arespecific from the corneal stroma. To reproduce this organization, we make the hypothesisthat through corneal fibroblasts alignment, using LAB, on a collagen hydrogel, it would bepossible to align collagen fibers in the same direction. Because printed cells are alive anddynamic, the cell pattern initially printed is subjected to self-organization processes. It isthus necessary to determine the printing and culture parameters that promote reproducibleand stable cell alignments. By using second harmonic generation microscopy, collagenfiber reorganization by corneal fibroblasts has been observed. Collagen fiber direction ismatching with cell alignment. Corneal fibroblasts have been printed on successive collagenlayers; it allows reproducing the variations in collagen fiber direction from one lamella toanother that are observed in the native corneal stroma

    Applications of Laser-Assisted Bioprinting to corneal stroma engineering

    No full text
    La bioimpression assistée par laser (LAB) permet de positionner des gouttesde cellules avec une précision micrométrique. Il est ainsi possible de donner uneorganisation initiale aux cellules au sein d’une structure tissulaire 3D. Notre objectif estd’utiliser le LAB pour reproduire l’histo-architecture du stroma cornéen. Le stroma cornéenest un assemblage transparent de lamelles d’une épaisseur totale de 500 μm. Au sein dechaque lamelle, les fibres de collagène ont une même direction, un même diamètre et sontrégulièrement espacées grâce à la présence de protéoglycanes spécifiques du stromacornéen. Pour reproduire cette organisation, nous avons fait l’hypothèse qu’en alignant desfibroblastes du stroma sur un hydrogel de collagène à l’aide du LAB, il serait possibled’aligner les fibres de collagène dans la même direction. Du fait que les cellules impriméessont vivantes et dynamiques, le motif cellulaire initialement imprimé est soumis à desprocessus d’auto-organisation. Il a donc fallu déterminer les paramètres, à la foisd’impression et de culture, permettant d’obtenir de façon reproductible des alignements decellules stables dans le temps. Grâce à la microscopie à génération de secondeharmonique, le remaniement des fibres de collagène par les fibroblastes cornéens a pu êtreobservé. La direction des fibres de collagène correspond à celle de l’alignement cellulaire.En imprimant les fibroblastes de cornée sur des couches successives de collagène, noussommes parvenus à reproduire les variations de direction des fibres de collagène d’unelamelle à l’autre qui sont observées dans le stroma cornéen natif.Laser-Assisted Bioprinting allows positioning of cell droplets with amicrometric precision. It is thus possible to give an initial organization to the cells within a3D tissue structure. Our objective is to use LAB to reproduce the corneal stroma histoarchitecture.The corneal stroma is a transparent assembly of lamellae with a totalthickness of 500 μm. Within each lamella, collagen fibers have the same direction, thesame diameter, and a regular spacing thanks to the presence of proteoglycans which arespecific from the corneal stroma. To reproduce this organization, we make the hypothesisthat through corneal fibroblasts alignment, using LAB, on a collagen hydrogel, it would bepossible to align collagen fibers in the same direction. Because printed cells are alive anddynamic, the cell pattern initially printed is subjected to self-organization processes. It isthus necessary to determine the printing and culture parameters that promote reproducibleand stable cell alignments. By using second harmonic generation microscopy, collagenfiber reorganization by corneal fibroblasts has been observed. Collagen fiber direction ismatching with cell alignment. Corneal fibroblasts have been printed on successive collagenlayers; it allows reproducing the variations in collagen fiber direction from one lamella toanother that are observed in the native corneal stroma

    Sentinel Node Status and Immunosuppression: Recurrence Factors in Localized Merkel Cell Carcinoma

    No full text
    International audienceThe prognostic value of the sentinel lymph node in Merkel cell carcinoma (MCC) has been examined previously in heterogeneous retrospective studies. The current retrospective study included a homogeneous population of patients with a localized MCC, all staged with sentinel lymph node biopsy. Factors associated with 3-year progression-free survival were analysed using logistic regression. The sentinel lymph node was positive in 32% of patients. The recurrence rate was 26.9%. In first analyses (n = 108), gender (p = 0.0115) and the presence of immunosuppression (p = 0.0494) were the only significant independent factors. In further analyses (n = 80), excluding patients treated with regional radiotherapy, sentinel lymph node status was the only significant prognostic factor (p = 0.0281). Immunosuppression and positive sentinel lymph node are associated with a worse prognosis in patients with MCC. Nodal irradiation impacts on the prognostic value of the sentinel lymph node status

    Table_2_Immune changes in hilar tumor draining lymph nodes following node sparing neoadjuvant chemoradiotherapy of localized cN0 non-small cell lung cancer.xlsx

    No full text
    BackgroundWhile much progress has been accomplished in the understanding of radiation-induced immune effects in tumors, little is known regarding the mechanisms involved at the tumor draining lymph node (TDLN) level. The objective of this retrospective study was to assess the immune and biological changes arising in non-involved TDLNs upon node sparing concurrent chemoradiotherapy (CRT) of non-small cell lung cancer (NSCLC) tumors.MethodsPatients with proven localized (cN0M0) NSCLC, treated by radical surgery plus lymph node dissection with (CRT+) or without (CRT-) neoadjuvant chemoradiotherapy, whereby radiotherapy was targeted on the primary tumor with no significant incidental irradiation of the non-involved TDLN station (stations XI), were identified. Bulk RNA sequencing of TDLNs was performed and data were analyzed based on differential gene expression (DGE) and gene sets enrichment.ResultsSixteen patients were included and 25 TDLNs were analyzed: 6 patients in the CRT+ group (12 samples) and 10 patients in the CRT- group (13 samples). Overall, 1001 genes were differentially expressed between the two groups (CRT+ and CRT-). Analysis with g-profiler revealed that gene sets associated with antitumor immune response, inflammatory response, hypoxia, angiogenesis, epithelial mesenchymal transition and extra-cellular matrix remodeling were enriched in the CRT+ group, whereas only gene sets associated with B cells and B-cell receptor signaling were enriched in the CRT- group. Unsupervised dimensionality reduction identified two clusters of TDLNs from CRT+ patients, of which one cluster (cluster 1) exhibited higher expression of pathways identified as enriched in the overall CRT+ group in comparison to the CRT- group. In CRT+ cluster 1, 3 out of 3 patients had pathological complete response (pCR) or major pathological response (MPR) to neoadjuvant CRT, whereas only 1 out of 3 patients in the other CRT+ cluster (cluster 2) experienced MPR and none exhibited pCR.ConclusionNeoadjuvant node sparing concurrent CRT of NSCLC patients is associated with distinct microenvironment and immunological patterns in non-involved TDLNs as compared to non-involved TDLNs from patients with non-irradiated tumors. Our data are in line with studies showing superiority of lymph node sparing irradiation of the primary tumor in the induction of antitumor immunity.</p

    Table_1_Immune changes in hilar tumor draining lymph nodes following node sparing neoadjuvant chemoradiotherapy of localized cN0 non-small cell lung cancer.xlsx

    No full text
    BackgroundWhile much progress has been accomplished in the understanding of radiation-induced immune effects in tumors, little is known regarding the mechanisms involved at the tumor draining lymph node (TDLN) level. The objective of this retrospective study was to assess the immune and biological changes arising in non-involved TDLNs upon node sparing concurrent chemoradiotherapy (CRT) of non-small cell lung cancer (NSCLC) tumors.MethodsPatients with proven localized (cN0M0) NSCLC, treated by radical surgery plus lymph node dissection with (CRT+) or without (CRT-) neoadjuvant chemoradiotherapy, whereby radiotherapy was targeted on the primary tumor with no significant incidental irradiation of the non-involved TDLN station (stations XI), were identified. Bulk RNA sequencing of TDLNs was performed and data were analyzed based on differential gene expression (DGE) and gene sets enrichment.ResultsSixteen patients were included and 25 TDLNs were analyzed: 6 patients in the CRT+ group (12 samples) and 10 patients in the CRT- group (13 samples). Overall, 1001 genes were differentially expressed between the two groups (CRT+ and CRT-). Analysis with g-profiler revealed that gene sets associated with antitumor immune response, inflammatory response, hypoxia, angiogenesis, epithelial mesenchymal transition and extra-cellular matrix remodeling were enriched in the CRT+ group, whereas only gene sets associated with B cells and B-cell receptor signaling were enriched in the CRT- group. Unsupervised dimensionality reduction identified two clusters of TDLNs from CRT+ patients, of which one cluster (cluster 1) exhibited higher expression of pathways identified as enriched in the overall CRT+ group in comparison to the CRT- group. In CRT+ cluster 1, 3 out of 3 patients had pathological complete response (pCR) or major pathological response (MPR) to neoadjuvant CRT, whereas only 1 out of 3 patients in the other CRT+ cluster (cluster 2) experienced MPR and none exhibited pCR.ConclusionNeoadjuvant node sparing concurrent CRT of NSCLC patients is associated with distinct microenvironment and immunological patterns in non-involved TDLNs as compared to non-involved TDLNs from patients with non-irradiated tumors. Our data are in line with studies showing superiority of lymph node sparing irradiation of the primary tumor in the induction of antitumor immunity.</p

    Table_3_Immune changes in hilar tumor draining lymph nodes following node sparing neoadjuvant chemoradiotherapy of localized cN0 non-small cell lung cancer.docx

    No full text
    BackgroundWhile much progress has been accomplished in the understanding of radiation-induced immune effects in tumors, little is known regarding the mechanisms involved at the tumor draining lymph node (TDLN) level. The objective of this retrospective study was to assess the immune and biological changes arising in non-involved TDLNs upon node sparing concurrent chemoradiotherapy (CRT) of non-small cell lung cancer (NSCLC) tumors.MethodsPatients with proven localized (cN0M0) NSCLC, treated by radical surgery plus lymph node dissection with (CRT+) or without (CRT-) neoadjuvant chemoradiotherapy, whereby radiotherapy was targeted on the primary tumor with no significant incidental irradiation of the non-involved TDLN station (stations XI), were identified. Bulk RNA sequencing of TDLNs was performed and data were analyzed based on differential gene expression (DGE) and gene sets enrichment.ResultsSixteen patients were included and 25 TDLNs were analyzed: 6 patients in the CRT+ group (12 samples) and 10 patients in the CRT- group (13 samples). Overall, 1001 genes were differentially expressed between the two groups (CRT+ and CRT-). Analysis with g-profiler revealed that gene sets associated with antitumor immune response, inflammatory response, hypoxia, angiogenesis, epithelial mesenchymal transition and extra-cellular matrix remodeling were enriched in the CRT+ group, whereas only gene sets associated with B cells and B-cell receptor signaling were enriched in the CRT- group. Unsupervised dimensionality reduction identified two clusters of TDLNs from CRT+ patients, of which one cluster (cluster 1) exhibited higher expression of pathways identified as enriched in the overall CRT+ group in comparison to the CRT- group. In CRT+ cluster 1, 3 out of 3 patients had pathological complete response (pCR) or major pathological response (MPR) to neoadjuvant CRT, whereas only 1 out of 3 patients in the other CRT+ cluster (cluster 2) experienced MPR and none exhibited pCR.ConclusionNeoadjuvant node sparing concurrent CRT of NSCLC patients is associated with distinct microenvironment and immunological patterns in non-involved TDLNs as compared to non-involved TDLNs from patients with non-irradiated tumors. Our data are in line with studies showing superiority of lymph node sparing irradiation of the primary tumor in the induction of antitumor immunity.</p

    Image_2_Immune changes in hilar tumor draining lymph nodes following node sparing neoadjuvant chemoradiotherapy of localized cN0 non-small cell lung cancer.tiff

    No full text
    BackgroundWhile much progress has been accomplished in the understanding of radiation-induced immune effects in tumors, little is known regarding the mechanisms involved at the tumor draining lymph node (TDLN) level. The objective of this retrospective study was to assess the immune and biological changes arising in non-involved TDLNs upon node sparing concurrent chemoradiotherapy (CRT) of non-small cell lung cancer (NSCLC) tumors.MethodsPatients with proven localized (cN0M0) NSCLC, treated by radical surgery plus lymph node dissection with (CRT+) or without (CRT-) neoadjuvant chemoradiotherapy, whereby radiotherapy was targeted on the primary tumor with no significant incidental irradiation of the non-involved TDLN station (stations XI), were identified. Bulk RNA sequencing of TDLNs was performed and data were analyzed based on differential gene expression (DGE) and gene sets enrichment.ResultsSixteen patients were included and 25 TDLNs were analyzed: 6 patients in the CRT+ group (12 samples) and 10 patients in the CRT- group (13 samples). Overall, 1001 genes were differentially expressed between the two groups (CRT+ and CRT-). Analysis with g-profiler revealed that gene sets associated with antitumor immune response, inflammatory response, hypoxia, angiogenesis, epithelial mesenchymal transition and extra-cellular matrix remodeling were enriched in the CRT+ group, whereas only gene sets associated with B cells and B-cell receptor signaling were enriched in the CRT- group. Unsupervised dimensionality reduction identified two clusters of TDLNs from CRT+ patients, of which one cluster (cluster 1) exhibited higher expression of pathways identified as enriched in the overall CRT+ group in comparison to the CRT- group. In CRT+ cluster 1, 3 out of 3 patients had pathological complete response (pCR) or major pathological response (MPR) to neoadjuvant CRT, whereas only 1 out of 3 patients in the other CRT+ cluster (cluster 2) experienced MPR and none exhibited pCR.ConclusionNeoadjuvant node sparing concurrent CRT of NSCLC patients is associated with distinct microenvironment and immunological patterns in non-involved TDLNs as compared to non-involved TDLNs from patients with non-irradiated tumors. Our data are in line with studies showing superiority of lymph node sparing irradiation of the primary tumor in the induction of antitumor immunity.</p

    Image_1_Immune changes in hilar tumor draining lymph nodes following node sparing neoadjuvant chemoradiotherapy of localized cN0 non-small cell lung cancer.tiff

    No full text
    BackgroundWhile much progress has been accomplished in the understanding of radiation-induced immune effects in tumors, little is known regarding the mechanisms involved at the tumor draining lymph node (TDLN) level. The objective of this retrospective study was to assess the immune and biological changes arising in non-involved TDLNs upon node sparing concurrent chemoradiotherapy (CRT) of non-small cell lung cancer (NSCLC) tumors.MethodsPatients with proven localized (cN0M0) NSCLC, treated by radical surgery plus lymph node dissection with (CRT+) or without (CRT-) neoadjuvant chemoradiotherapy, whereby radiotherapy was targeted on the primary tumor with no significant incidental irradiation of the non-involved TDLN station (stations XI), were identified. Bulk RNA sequencing of TDLNs was performed and data were analyzed based on differential gene expression (DGE) and gene sets enrichment.ResultsSixteen patients were included and 25 TDLNs were analyzed: 6 patients in the CRT+ group (12 samples) and 10 patients in the CRT- group (13 samples). Overall, 1001 genes were differentially expressed between the two groups (CRT+ and CRT-). Analysis with g-profiler revealed that gene sets associated with antitumor immune response, inflammatory response, hypoxia, angiogenesis, epithelial mesenchymal transition and extra-cellular matrix remodeling were enriched in the CRT+ group, whereas only gene sets associated with B cells and B-cell receptor signaling were enriched in the CRT- group. Unsupervised dimensionality reduction identified two clusters of TDLNs from CRT+ patients, of which one cluster (cluster 1) exhibited higher expression of pathways identified as enriched in the overall CRT+ group in comparison to the CRT- group. In CRT+ cluster 1, 3 out of 3 patients had pathological complete response (pCR) or major pathological response (MPR) to neoadjuvant CRT, whereas only 1 out of 3 patients in the other CRT+ cluster (cluster 2) experienced MPR and none exhibited pCR.ConclusionNeoadjuvant node sparing concurrent CRT of NSCLC patients is associated with distinct microenvironment and immunological patterns in non-involved TDLNs as compared to non-involved TDLNs from patients with non-irradiated tumors. Our data are in line with studies showing superiority of lymph node sparing irradiation of the primary tumor in the induction of antitumor immunity.</p
    corecore