112 research outputs found

    Social robot tutoring for child second language learning

    Get PDF
    An increasing amount of research is being conducted to determine how a robot tutor should behave socially in educa- tional interactions with children. Both human-human and human- robot interaction literature predicts an increase in learning with increased social availability of a tutor, where social availability has verbal and nonverbal components. Prior work has shown that greater availability in the nonverbal behaviour of a robot tutor has a positive impact on child learning. This paper presents a study with 67 children to explore how social aspects of a tutor robot’s speech influences their perception of the robot and their language learning in an interaction. Children perceive the difference in social behaviour between ‘low’ and ‘high’ verbal availability conditions, and improve significantly between a pre- and a post-test in both conditions. A longer-term retention test taken the following week showed that the children had retained almost all of the information they had learnt. However, learning was not affected by which of the robot behaviours they had been exposed to. It is suggested that in this short-term interaction context, additional effort in developing social aspects of a robot’s verbal behaviour may not return the desired positive impact on learning gains

    Factors that Affect Personalization of Robots for Older Adults

    Full text link
    We introduce a taxonomy of important factors to consider when designing interactions with an assistive robot in a senior living facility. These factors are derived from our reflection on two field studies and are grouped into the following high-level categories: primary user (residents), care partners, robot, facility and external circumstances. We outline how multiple factors in these categories impact different aspects of personalization, such as adjusting interactions based on the unique needs of a resident or modifying alerts about the robot's status for different care partners. This preliminary taxonomy serves as a framework for considering how to deploy personalized assistive robots in the complex caregiving ecosystem.Comment: Presented at CONCATENATE Workshop at HRI 2023 in Stockholm, Swede

    Generating spatial referring expressions in a social robot: Dynamic vs. non-ambiguous

    Get PDF
    Generating spatial referring expressions is key to allowing robots to communicate with people in an environment. The focus of most algorithms for generation is to create a non-ambiguous description, and how best to deal with the combination explosion this can create in a complex environment. However, this is not how people naturally communicate. Humans tend to give an under-specified description and then rely on a strategy of repair to reduce the number of possible locations or objects until the correct one is identified, what we refer to here as a dynamic description. We present here a method for generating these dynamic descriptions for Human Robot Interaction, using machine learning to generate repair statements. We also present a study with 61 participants in a task on object placement. This task was presented in a 2D environment that favored a non-ambiguous description. In this study we demonstrate that our dynamic method of communication can be more efficient for people to identify a location compared to one that is non-ambiguous

    Periscope: A Robotic Camera System to Support Remote Physical Collaboration

    Full text link
    We investigate how robotic camera systems can offer new capabilities to computer-supported cooperative work through the design, development, and evaluation of a prototype system called Periscope. With Periscope, a local worker completes manipulation tasks with guidance from a remote helper who observes the workspace through a camera mounted on a semi-autonomous robotic arm that is co-located with the worker. Our key insight is that the helper, the worker, and the robot should all share responsibility of the camera view--an approach we call shared camera control. Using this approach, we present a set of modes that distribute the control of the camera between the human collaborators and the autonomous robot depending on task needs. We demonstrate the system's utility and the promise of shared camera control through a preliminary study where 12 dyads collaboratively worked on assembly tasks. Finally, we discuss design and research implications of our work for future robotic camera systems that facilitate remote collaboration.Comment: This is a pre-print of the article accepted for publication in PACM HCI and will be presented at CSCW 202

    From characterising three years of HRI to methodology and reporting recommendations

    Get PDF
    Human-Robot Interaction (HRI) research requires the integration and cooperation of multiple disciplines, technical and social, in order to make progress. In many cases using different motivations, each of these disciplines bring with them different assumptions and methodologies. We assess recent trends in the field of HRI by examining publications in the HRI conference over the past three years (over 100 full papers), and characterise them according to 14 categories. We focus primarily on aspects of methodology. From this, a series of practical recommendations based on rigorous guidelines from other research fields that have not yet become common practice in HRI are proposed. Furthermore, we explore the primary implications of the observed recent trends for the field more generally, in terms of both methodology and research directions. We propose that the interdisciplinary nature of HRI must be maintained, but that a common methodological approach provides a much needed frame of reference to facilitate rigorous future progress

    A System for Human-Robot Teaming through End-User Programming and Shared Autonomy

    Full text link
    Many industrial tasks-such as sanding, installing fasteners, and wire harnessing-are difficult to automate due to task complexity and variability. We instead investigate deploying robots in an assistive role for these tasks, where the robot assumes the physical task burden and the skilled worker provides both the high-level task planning and low-level feedback necessary to effectively complete the task. In this article, we describe the development of a system for flexible human-robot teaming that combines state-of-the-art methods in end-user programming and shared autonomy and its implementation in sanding applications. We demonstrate the use of the system in two types of sanding tasks, situated in aircraft manufacturing, that highlight two potential workflows within the human-robot teaming setup. We conclude by discussing challenges and opportunities in human-robot teaming identified during the development, application, and demonstration of our system.Comment: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI '24), March 11 - 14, 2024, Boulder, CO, US

    Teaching robots social autonomy from in situ human guidance

    Get PDF
    Striking the right balance between robot autonomy and human control is a core challenge in social robotics, in both technical and ethical terms. On the one hand, extended robot autonomy offers the potential for increased human productivity and for the off-loading of physical and cognitive tasks. On the other hand, making the most of human technical and social expertise, as well as maintaining accountability, is highly desirable. This is particularly relevant in domains such as medical therapy and education, where social robots hold substantial promise, but where there is a high cost to poorly performing autonomous systems, compounded by ethical concerns. We present a field study in which we evaluate SPARC (supervised progressively autonomous robot competencies), an innovative approach addressing this challenge whereby a robot progressively learns appropriate autonomous behavior from in situ human demonstrations and guidance. Using online machine learning techniques, we demonstrate that the robot could effectively acquire legible and congruent social policies in a high-dimensional child-tutoring situation needing only a limited number of demonstrations while preserving human supervision whenever desirable. By exploiting human expertise, our technique enables rapid learning of autonomous social and domain-specific policies in complex and nondeterministic environments. Last, we underline the generic properties of SPARC and discuss how this paradigm is relevant to a broad range of difficult human-robot interaction scenarios
    corecore