501 research outputs found
Hybrid silica-metalloporphyrin nanomaterials exhibiting intensive absorption of light in the red-region
Human colon adenocarcinoma HT-29 cell: electrochemistry and nicotine stimulation
Recently, it was demonstrated that colorectal cancer HT-29 cells can secrete epinephrine (adrenaline) in an autocrine manner to auto-stimulate cellular growth by adrenoreceptors activation, and that this secretion is enhanced by nicotine, showing an indirect relation between colorectal cancer and tobacco. The electrochemical behaviour of human colon adenocarcinoma HT-29 cells from a colorectal adenocarcinoma cell line, the hormone and neurotransmitter epinephrine, and nicotine, were investigated by cyclic voltammetry, using indium tin oxide (ITO), glassy carbon (GC) and screen printed carbon (SPC) electrodes. The oxidation of the HT-29 cells, previously grown onto ITO or SPC surfaces, followed an irreversible oxidation process that involved the formation of a main oxidation product that undergoes irreversible reduction, as in the epinephrine oxidation mechanism. The effect of nicotine stimulation of the HT-29 cells was also investigated. Nicotine, at different concentration levels 1, 2 and 15 mM, was introduced in the culture medium and an increase with incubation time, 0 to 3 h and 30 min, of the HT-29 cells oxidation and reduction peaks was observed. The interaction of nicotine with the HT-29 cells stimulated the epinephrine secretion causing an increase in epinephrine release concentration, and enabling the conclusion that epinephrine and nicotine play an important role in the colorectal tumour growth
The effect of Mg location on Co-Mg-Ru/gamma-Al2O3 Fischer-Tropsch catalysts
The effectiveness of Mg as a promoter of Co-Ru/γ-Al(2)O(3) Fischer–Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of Mg(x)Al(2)O(3+x) if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO(3) phases. After subsequent Co-Ru impregnation Mg(x)Co(3−x)O(4) is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into Mg(x)Co(3−x)O(4). Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in Mg(x)Co(3−x)O(4). Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature
The Romanian Orthodox Church from perspective the political factor (1944–1989)
Based on specialized literature, unpublished historical sources (archive materials), speeches of political leaders of the time, press and legislation of the time, memoirs, etc. the evolution of the Romanian Orthodox Church in the post-war period is analyzed; the international and internal factors, radical changes in the life of the largest ecclesiastical institution in Romania. This article presented the influence of the main ruling party (Romanian Labor Party/ Romanian Communist Party) in the life of the Romanian Orthodox Church. A review is made of the main political and repressive instruments (Ministry/Department of Cults) that influenced the course of religious life under the communist regime. The moderate actions, as well as the radical ones used by the political authorities on religious life, were presented. The political discourse related to the edification of Romanian society was analyzed, identifying in this way the place of the Romanian Orthodox Church. In order to survive the new conditions, hostile to religious cults, the clerical institution had to apply different forms of “coexistence” with the political authorities. Although the legislation of the time provided for religious freedom, the political factor kept a close eye on the religious establishment. In the context of the “edification of the multilaterally developed social site society”, the role of the church in society became increasingly uncertain
Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains
Background: Saccharomyces cerevisiae (Baker’s yeast) is found in diverse ecological niches and is characterized by
high adaptive potential under challenging environments. In spite of recent advances on the study of yeast
genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto
this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and
laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and
stationary growth phases.
Results: Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose
metabolism and in the stress response elicited during fermentation were among the most variable. This gene
expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower
average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and
sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression
among the environmental isolates.
Conclusions: Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol
accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results
support previous data showing that gene expression variability is a source of phenotypic diversity among closely
related organisms.Fundação para a Ciência e TecnologiaThe authors wish to thank Adega Cooperativa da Bairrada, Cantanhede,
Portugal, for providing the commercial strains
TOWARD A MORE EFFICIENT UTILISATION OF BETALAINS AS PIGMENTS FOR DYE-SENSITIZED SOLAR CELLS
We report on the use of natural dyes, betalains, as pigments for Dye-Sensitized Solar Cells (DSSC). Time-Dependent Density Functional Theory calculations provide the electronic spectra of the various types of betalain dyes and allow a discussion of their matching to the solar spectrum. Experimentally, we vary parameters such as the nature of the extracting solvent, the pH and the composition of the extract, to optimize the fabrication of DSSCs using betalains. Based on UV-Vis spectra correlated with electro-optic measurements providing the photovolatic conversion efficiency under standard AM1.5 conditions we find that the decrease of the pH of the dye solution leads to an increase of the DSSC performance, likely due to the increasing ratios of betacyanins with respect to betaxanthins in the extracts as well as the possible hydrolysis of betanin to betanidin. In order to fabricate better DSSCs using betalain natural dyes, we propose to use water as extracting solvent, to increase the content in betacyanins on the photoanode by a preliminary purification and to raise the stability of the dyes preferably by using anti-oxidizing copigments that do not interact with the substrate
The violent youth of bright and massive cluster galaxies and their maturation over 7 billion years
In this study, we investigate the formation and evolution mechanisms of the brightest cluster galaxies (BCGs) over cosmic time. At high redshift (z ∼ 0.9), we selected BCGs and most massive cluster galaxies (MMCGs) from the Cl1604 supercluster and compared them to low-redshift (z ∼ 0.1) counterparts drawn from the MCXC meta-catalogue, supplemented by Sloan Digital Sky Survey imaging and spectroscopy. We observed striking differences in the morphological, colour, spectral, and stellar mass properties of the BCGs/MMCGs in the two samples. High-redshift BCGs/MMCGs were, in many cases, star-forming, late-type galaxies, with blue broad-band colours, properties largely absent amongst the low-redshift BCGs/MMCGs. The stellar mass of BCGs was found to increase by an average factor of 2.51 ± 0.71 from z ∼ 0.9 to z ∼ 0.1. Through this and other comparisons, we conclude that a combination of major merging (mainly wet or mixed) and in situ star formation are the main mechanisms which build stellar mass in BCGs/MMCGs. The stellar mass growth of the BCGs/MMCGs also appears to grow in lockstep with both the stellar baryonic and total mass of the cluster. Additionally, BCGs/MMCGs were found to grow in size, on average, a factor of ∼3, while their average Sérsic index increased by ∼0.45 from z ∼ 0.9 to z ∼ 0.1, also supporting a scenario involving major merging, though some adiabatic expansion is required. These observational results are compared to both models and simulations to further explore the implications on processes which shape and evolve BCGs/MMCGs over the past ∼7 Gyr
Structural basis of multitasking by the apicoplast DNA polymerase from Plasmodium falciparum
Plasmodium falciparum is a eukaryotic pathogen responsible for the majority of malaria-related fatalities. Plasmodium belongs to the phylum Apicomplexa and, like most members of this phylum, contains a non-photosynthetic plastid called the apicoplast. The apicoplast has its own genome, replicated by a dedicated replisome. Unlike other cellular replisomes, the apicoplast replisome uses a single DNA polymerase (apPol). This suggests that apPol can multitask and catalyse both replicative and lesion bypass synthesis. Replicative synthesis relies on a restrictive active site for high accuracy while lesion bypass typically requires an open active site. This raises the question: how does apPol combine the structural features of multiple DNA polymerases in a single protein? Using single-particle electron cryomicroscopy (cryoEM), we have solved the structures of apPol bound to its undamaged DNA and nucleotide substrates in five pre-chemistry conformational states. We found that apPol can accommodate a nascent base pair with the fingers in an open configuration, which might facilitate the lesion bypass activity. In the fingers-open state, we identified a nascent base pair checkpoint that preferentially selects Watson–Crick base pairs, an essential requirement for replicative synthesis. Taken together, these structural features might explain how apPol balances replicative and lesion bypass synthesis
- …
