11,780 research outputs found
Passive Mode-Locking of Monolithic InGaAs/AlGaAs Double Quantum Well Lasers at 42GHz Repetition Rate
Pulse trains with a 42GHz repetition rate were generated by monolithic InGaAs/AlGaAs double quantum well lasers at a wavelength of 985 [angstroms]. The cavity was electrically divided into three regions, one providing gain and the other two providing saturable absorption. The optical modulation has a depth greater than 98% and full-width at half-maximum under 6ps, and bias conditions for sustained mode-locking are determined
Tunable superlattice p-i-n photodetectors: characteristics, theory, and application
Extended measurements and theory on the recently developed monolithic wavelength demultiplexer consisting of voltage-tunable superlattice p-i-n photodetectors in a waveguide confirmation are discussed. It is shown that the device is able to demultiplex and detect two optical signals with a wavelength separation of 20 nm directly into different electrical channels at a data rate of 1 Gb/s and with a crosstalk attenuation varying between 20 and 28 dB, depending on the polarization. The minimum acceptable crosstalk attenuation at a data rate of 100 Mb/s is determined to be 10 dB. The feasibility of using the device as a polarization angle sensor for linearly polarized light is also demonstrated. A theory for the emission of photogenerated carriers out of the quantum wells is included, since this is potentially a speed limiting mechanism in these detectors. It is shown that a theory of thermally assisted tunneling by polar optical phonon interaction is able to predict emission times consistent with the observed temporal response
On the Structure and Stabilization Mechanisms of Planar and Cylindrical Premixed Flames
The configurational simplicity of the stationary one-dimensional flames renders them intrinsically attractive for fundamental flame structure studies. The possibility and fidelity of studies of such flames on earth, however, have been severely restricted by the unidirectional nature of the gravity vector. To demonstrate these complications, let us first consider the premixed flame. Here a stationary, one-dimensional flame can be established by using the flat-flame burner. We next consider nonpremixed flames. First it may be noted that in an unbounded gravity-free environment, the only stationary one-dimensional flame is the spherical flame. Indeed, this is a major motivation for the study of microgravity droplet combustion, in which the gas-phase processes can be approximated to be quasi-steady because of the significant disparity between the gas and liquid densities for subcritical combustion. In view of the above considerations, an experimental and theoretical program on cylindrical and spherical premixed and nonpremixed flames in microgravity has been initiated. For premixed flames, we are interested in: (1) assessing the heat loss versus flow divergence as the dominant stabilization mechanism; (2) determining the laminar flame speed by using this configuration; and (3) understanding the development of flamefront instability and the effects of the flame curvature on the burning intensity
Broadband Tuning (170nm) of InGaAs Quantum Well Lasers
The wavelength tuning properties of strained InGaAs quantum well lasers using an external grating for feedback is reported. Tunable laser oscillation has been observed over a range of 170 nm, between 840 and 1010 nm, under pulsed current excitation. The optimal conditions for broadband tunability for the InGaAs lasers are different from GaAs lasers, which is attributed to a difference in spectral gain curves. Together with an optimised GaAs quantum well laser the entire region between 740 and 1010 nm is spanned
Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence
A new technique for determining carrier diffusion lengths by cathodoluminescence measurements is presented. The technique is extremely accurate and can be applied to a variety of structures. Ambipolar diffusion lengths are determined for GaAs quantum well material, bulk GaAs, Al0.21Ga0.79As, and Al0.37Ga0.63As. A large increase in the diffusion length is found for Al0.37Ga0.63As and is attributed to an order of magnitude increase in lifetime
Very High Modulation Efficiency of Ultralow Threshold Current Single Quantum Well InGaAs Lasers
A record high current modulation efficiency of 5 GHz/[sqrt](mA) has been demonstrated in an ultralow threshold strained layer single quantum well InGaAs laser
Integer quantum Hall effect on a six valley hydrogen-passivated silicon (111) surface
We report magneto-transport studies of a two-dimensional electron system
formed in an inversion layer at the interface between a hydrogen-passivated
Si(111) surface and vacuum. Measurements in the integer quantum Hall regime
demonstrate the expected sixfold valley degeneracy for these surfaces is
broken, resulting in an unequal occupation of the six valleys and anisotropy in
the resistance. We hypothesize the misorientation of Si surface breaks the
valley states into three unequally spaced pairs, but the observation of odd
filling factors, is difficult to reconcile with non-interacting electron
theory.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
A novel technique for the direct determination of carrier diffusion lengths in GaAs/AlGaAs heterostructures using cathodoluminescence
A new technique for determining carrier diffusion lengths
in direct gap semiconductors by cathodoluminescence measurement
is presented. Ambipolar diffusion lengths are
determined for GaAs quantum well material, bulk GaAs,
and Al_xGa_(1-x)As with x up to 0.38. A large increase in
the diffusion length is found as x approaches 0.38 and is
attributed to an order of magnitude increase in lifetime
Recommended from our members
Ancestry-Dependent Enrichment of Deleterious Homozygotes in Runs of Homozygosity.
Runs of homozygosity (ROH) are important genomic features that manifest when an individual inherits two haplotypes that are identical by descent. Their length distributions are informative about population history, and their genomic locations are useful for mapping recessive loci contributing to both Mendelian and complex disease risk. We have previously shown that ROH, and especially long ROH that are likely the result of recent parental relatedness, are enriched for homozygous deleterious coding variation in a worldwide sample of outbred individuals. However, the distribution of ROH in admixed populations and their relationship to deleterious homozygous genotypes is understudied. Here we analyze whole-genome sequencing data from 1,441 unrelated individuals from self-identified African American, Puerto Rican, and Mexican American populations. These populations are three-way admixed between European, African, and Native American ancestries and provide an opportunity to study the distribution of deleterious alleles partitioned by local ancestry and ROH. We re-capitulate previous findings that long ROH are enriched for deleterious variation genome-wide. We then partition by local ancestry and show that deleterious homozygotes arise at a higher rate when ROH overlap African ancestry segments than when they overlap European or Native American ancestry segments of the genome. These results suggest that, while ROH on any haplotype background are associated with an inflation of deleterious homozygous variation, African haplotype backgrounds may play a particularly important role in the genetic architecture of complex diseases for admixed individuals, highlighting the need for further study of these populations
Recommended from our members
Adenovirus E1A Activation Domain Regulates H3 Acetylation Affecting Varied Steps in Transcription at Different Viral Promoters.
How histone acetylation promotes transcription is not clearly understood. Here, we confirm an interaction between p300 and the adenovirus 2 large E1A activation domain (AD) and map the interacting regions in E1A by observing colocalization at an integrated lacO array of fusions of LacI-mCherry to E1A fragments with YFP-p300. Viruses with mutations in E1A subdomains were constructed and analyzed for kinetics of early viral RNA expression and association of acetylated H3K9, K18, K27, TBP, and RNA polymerase II (Pol II) across the viral genome. The results indicate that this E1A interaction with p300 is required for H3K18 and H3K27 acetylation at the E2early, E3, and E4 promoters and is required for TBP and Pol II association with the E2early promoter. In contrast, H3K18/27 acetylation was not required for TBP and Pol II association with the E3 and E4 promoters but was required for E4 transcription at a step subsequent to Pol II preinitiation complex assembly.IMPORTANCE Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095-1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters
- …
