5,919 research outputs found

    Hierarchical Compound Poisson Factorization

    Full text link
    Non-negative matrix factorization models based on a hierarchical Gamma-Poisson structure capture user and item behavior effectively in extremely sparse data sets, making them the ideal choice for collaborative filtering applications. Hierarchical Poisson factorization (HPF) in particular has proved successful for scalable recommendation systems with extreme sparsity. HPF, however, suffers from a tight coupling of sparsity model (absence of a rating) and response model (the value of the rating), which limits the expressiveness of the latter. Here, we introduce hierarchical compound Poisson factorization (HCPF) that has the favorable Gamma-Poisson structure and scalability of HPF to high-dimensional extremely sparse matrices. More importantly, HCPF decouples the sparsity model from the response model, allowing us to choose the most suitable distribution for the response. HCPF can capture binary, non-negative discrete, non-negative continuous, and zero-inflated continuous responses. We compare HCPF with HPF on nine discrete and three continuous data sets and conclude that HCPF captures the relationship between sparsity and response better than HPF.Comment: Will appear on Proceedings of the 33 rd International Conference on Machine Learning, New York, NY, USA, 2016. JMLR: W&CP volume 4

    Center vortex model for the infrared sector of SU(3) Yang-Mills theory: Topological susceptibility

    Full text link
    The topological susceptibility of the SU(3) random vortex world-surface ensemble, an effective model of infrared Yang-Mills dynamics, is investigated. The model is implemented by composing vortex world-surfaces of elementary squares on a hypercubic lattice, supplemented by an appropriate specification of vortex color structure on the world-surfaces. Topological charge is generated in this picture by writhe and self-intersection of the vortex world-surfaces. Systematic uncertainties in the evaluation of the topological charge, engendered by the hypercubic construction, are discussed. Results for the topological susceptibility are reported as a function of temperature and compared to corresponding measurements in SU(3) lattice Yang-Mills theory. In the confined phase, the topological susceptibility of the random vortex world-surface ensemble appears quantitatively consistent with Yang-Mills theory. As the temperature is raised into the deconfined regime, the topological susceptibility falls off rapidly, but significantly less so than in SU(3) lattice Yang-Mills theory. Possible causes of this deviation, ranging from artefacts of the hypercubic description to more physical sources, such as the adopted vortex dynamics, are discussed.Comment: 30 pages, 6 figure

    Effects of neutral selection on the evolution of molecular species

    Full text link
    We introduce a new model of evolution on a fitness landscape possessing a tunable degree of neutrality. The model allows us to study the general properties of molecular species undergoing neutral evolution. We find that a number of phenomena seen in RNA sequence-structure maps are present also in our general model. Examples are the occurrence of "common" structures which occupy a fraction of the genotype space which tends to unity as the length of the genotype increases, and the formation of percolating neutral networks which cover the genotype space in such a way that a member of such a network can be found within a small radius of any point in the space. We also describe a number of new phenomena which appear to be general properties of neutrally evolving systems. In particular, we show that the maximum fitness attained during the adaptive walk of a population evolving on such a fitness landscape increases with increasing degree of neutrality, and is directly related to the fitness of the most fit percolating network.Comment: 16 pages including 4 postscript figures, typeset in LaTeX2e using the Elsevier macro package elsart.cl

    Apparent CPT Violation in Neutrino Oscillation Experiments

    Full text link
    We consider searching for light sterile fermions and new forces by using long baseline oscillations of neutrinos and antineutrinos. A new light sterile state and/or a new force can lead to apparent CPT violation in muon neutrino and antineutrino oscillations. As an example, we present an economical model of neutrino masses containing a sterile neutrino. The potential from the Standard Model neutral current gives rise to a difference between the disappearance probabilities of neutrinos and antineutrinos, when mixing with a light sterile neutrino is considered. The addition of a B-L interaction adds coherently to the neutrino current potential and increases the difference between neutrino and antineutrino disappearance. We find that this model can improve the fit to the results of MINOS for both neutrinos and antineutrinos, without any CPT violation, and that the regions of parameter space which improve the fit are within experimental constraints.Comment: 8 pages, 3 figures, added comment about CDHS, added reference

    Sequential Gaussian Processes for Online Learning of Nonstationary Functions

    Full text link
    Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: i) Conventional GP inference scales O(N3)O(N^{3}) with respect to the number of observations; ii) updating a GP model sequentially is not trivial; and iii) covariance kernels often enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose an online sequential Monte Carlo algorithm to fit mixtures of GPs that capture non-stationary behavior while allowing for fast, distributed inference. By formulating hyperparameter optimization as a multi-armed bandit problem, we accelerate mixing for real time inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the context of prediction for simulated non-stationary data and hospital time series data
    corecore