2,645 research outputs found

    Broadband Magnetometry and Temperature Sensing with a Light Trapping Diamond Waveguide

    Full text link
    Solid-state quantum sensors are attracting wide interest because of their exceptional sensitivity at room temperature. In particular, the spin properties of individual nitrogen vacancy (NV) color centers in diamond make it an outstanding nanoscale sensor of magnetic fields, electric fields, and temperature, under ambient conditions. Recent work on ensemble NV-based magnetometers, inertial sensors, and clocks have employed NN unentangled color centers to realize a factor of up to N\sqrt{N} improvement in sensitivity. However, to realize fully this signal enhancement, new techniques are required to excite efficiently and to collect fluorescence from large NV ensembles. Here, we introduce a light-trapping diamond waveguide (LTDW) geometry that enables both high fluorescence collection (20%\sim20\%) and efficient pump absorption achieving an effective path length exceeding 11 meter in a millimeter-sized device. The LTDW enables in excess of 2%2\% conversion efficiency of pump photons into optically detected magnetic resonance (ODMR) fluorescence, a \textit{three orders of magnitude} improvement over previous single-pass geometries. This dramatic enhancement of ODMR signal enables broadband measurements of magnetic field and temperature at less than 11 Hz, a frequency range inaccessible by dynamical decoupling techniques. We demonstrate \sim 1~\mbox{nT}/\sqrt{\mbox{Hz}} magnetic field sensitivity for 0.10.1 Hz to 1010 Hz and a thermal sensitivity of \sim 400 ~\mu\mbox{K}/\sqrt{\mbox{Hz}} and estimate a spin projection limit at 0.36\sim 0.36 fT/\sqrt{\mbox{Hz}} and \sim 139~\mbox{pK}/\sqrt{\mbox{Hz}}, respectively.Comment: 8 pages, 5 figure

    Wide-field Magnetic Field and Temperature Imaging using Nanoscale Quantum Sensors

    Full text link
    The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport, solid-state material dynamics, and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally-coated nanodiamonds to realize simultaneous wide-field MT imaging. Our "quantum conformally-attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame-rate imaging (100 - 1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron-mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields

    Wide-field strain imaging with preferentially aligned nitrogen-vacancy centers in polycrystalline diamond

    Get PDF
    We report on wide-field optically detected magnetic resonance imaging of nitrogen-vacancy centers (NVs) in type IIa polycrystalline diamond. These studies reveal a heterogeneous crystalline environment that produces a varied density of NV centers, including preferential orientation within some individual crystal grains, but preserves long spin coherence times. Using the native NVs as nanoscale sensors, we introduce a three-dimensional strain imaging technique with high sensitivity (<10⁻⁵Hz⁻½) and diffraction-limited resolution across a wide field of view.United States. Office of Naval Research (N00014-13-1-0316)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative I(FA9550-14-1-0052)United States. Air Force Office of Scientific Research (Presidential Early Career Award

    Low-control and robust quantum refrigerator and applications with electronic spins in diamond

    Get PDF
    We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the zz-direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics

    Global atmospheric sampling program

    Get PDF
    Automated instruments were installed on a commercial B-747 aircraft, during the program, to obtain baseline data and to monitor key atmospheric constituents associated with emissions of aircraft engines in order to determine if aircraft are contributing to pollution of the upper atmosphere. Data thus acquired on a global basis over the commercial air routes for 5 to 10 years will be analyzed. Ozone measurements in the 29,000 to 45,000 foot altitude were expanded over what has been available from ozonesondes. Limited aerosol composition measurements from filter samples show low levels of sulfates and nitrates in the upper troposphere. Recently installed instruments for measurement of carbon monoxide and condensation nuclei are beginning to return data

    Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks

    Full text link
    A central challenge in developing magnetically coupled quantum registers in diamond is the fabrication of nitrogen vacancy (NV) centers with localization below ~20 nm to enable fast dipolar interaction compared to the NV decoherence rate. Here, we demonstrate the targeted, high throughput formation of NV centers using masks with a thickness of 270 nm and feature sizes down to ~1 nm. Super-resolution imaging resolves NVs with a full-width maximum distribution of 26±726\pm7 nm and a distribution of NV-NV separations of 16±516\pm5 nm
    corecore