329 research outputs found

    Phase Transitions in Neutron Stars and Maximum Masses

    Get PDF
    Using the most recent realistic effective interactions for nuclear matter with a smooth extrapolation to high densities including causality, we constrain the equation of state and calculate maximum masses of rotating neutron stars. First and second order phase transitions to, e.g., quark matter at high densities are included. If neutron star masses of 2.3M\sim 2.3M_\odot from quasi-periodic oscillations in low mass X-ray binaries are confirmed, a soft equation of state as well as strong phase transitions can be excluded in neutron star cores.Comment: Replaced with revised version, 7 pages, 3 figs. To appear in Ap. J. Let

    3P_2-3F_2 pairing in neutron matter with modern nucleon-nucleon potentials

    Get PDF
    We present results for the 3P23F2^3P_2 - ^3F_2 pairing gap in neutron matter with several realistic nucleon-nucleon potentials, in particular with recent, phase-shift equivalent potentials. We find that their predictions for the gap cannot be trusted at densities above ρ1.7ρ0\rho\approx 1.7\rho_0, where ρ0\rho_0 is the saturation density for symmetric nuclear matter. In order to make predictions above that density, potential models which fit the nucleon-nucleon phase shifts up to about 1 GeV are required.Comment: Revtex style, 19 pages, 6 figures inlude

    Indentor-escape, delamination and orogenic collapse of the ca. 600-500 Ma East African/Antarctic Orogen in Mozambique and Dronning Maud Land (East Antarctica)

    Get PDF
    The East African/Antarctic Orogen (EAAO) is one of the largest orogenic belts on the planet, resulting from the collision of various parts of East and West- Protogondwana between ca. 600 and 550 Ma. The central and southern parts of the orogen are typified by high-grade rocks, representing the overprinted margins of the various colliding continental blocks. New fieldwork and geochronology in northern Mozambique reveals a protracted polyphase Ediacaran/Cambrian deformation history. New age constraints reveal high-grade metamorphism at 600-550 Ma, overprinting and older basement

    Hyperon effects on the properties of β\beta-stable neutron star matter

    Full text link
    We present results from Brueckner-Hartree-Fock calculations for β\beta-stable neutron star matter with nucleonic and hyperonic degrees of freedom employing the most recent parametrizations of the baryon-baryon interaction of the Nijmegen group. Only Σ\Sigma^- and Λ\Lambda are present up to densities 7ρ0\sim 7\rho_0. The corresponding equations of state are then used to compute properties of neutron stars such as masses and radii.Comment: 4 pages, contributed talk at HYP2000, Torino, 23-27 Oct. 200

    Modern nucleon-nucleon potentials and symmetry energy in infinite matter

    Get PDF
    We study the symmetry energy in infinite nuclear matter employing a non-relativistic Brueckner-Hartree-Fock approach and using various new nucleon-nucleon (NN) potentials, which fit np and pp scattering data very accurately. The potential models we employ are the recent versions of the Nijmegen group, Nijm-I, Nijm-II and Reid93, the Argonne V18V_{18} potential and the CD-Bonn potential. All these potentials yield a symmetry energy which increases with density, resolving a discrepancy that existed for older NN potentials. The origin of remaining differences is discussed.Comment: 17 pages, 10 figures included, elsevier latex style epsart.st

    Relativistic Structure of the Nucleon Self-Energy in Asymmetric Nuclei

    Get PDF
    The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an isospin dependence with even a wrong sign. Relativistic studies of finite nuclei have been based on such studies of asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are investigated.Comment: 9 pages, Latex 4 figures include
    corecore