1,008 research outputs found
Phase measurements with weak reference pulses
Quantum state discrimination for two coherent states with opposite phases as
measured relative to a reference pulse is analyzed as functions of the
intensities of both the signal states and of the reference pulse. This problem
is relevant for Quantum Key Distribution with phase encoding. We consider both
the optimum measurements and simple measurements that require only
beamsplitters and photodetectors.Comment: 5 pages, 5 figures. I apologize for this boring pape
Detecting drift of quantum sources: not the de Finetti theorem
We propose and analyze a method to detect and characterize the drift of a
nonstationary quantum source. It generalizes a standard measurement for
detecting phase diffusion of laser fields to quantum systems of arbitrary
Hilbert space dimension, qubits in particular. We distinguish diffusive and
systematic drifts, and examine how quickly one can determine that a source is
drifting. We show that for single-photon wavepackets our measurement is
implemented by the Hong-Ou-Mandel effect.Comment: 5 pages, 2 figure
The Quantum State of an Ideal Propagating Laser Field
We give a quantum information-theoretic description of an ideal propagating
CW laser field and reinterpret typical quantum-optical experiments in light of
this. In particular we show that contrary to recent claims [T. Rudolph and B.
C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)], a conventional laser can be
used for quantum teleportation with continuous variables and for generating
continuous-variable entanglement. Optical coherence is not required, but phase
coherence is. We also show that coherent states play a priveleged role in the
description of laser light.Comment: 4 pages RevTeX, to appear in PRL. For an extended version see
quant-ph/011115
Entanglement under restricted operations: Analogy to mixed-state entanglement
We show that the classification of bi-partite pure entangled states when
local quantum operations are restricted yields a structure that is analogous in
many respects to that of mixed-state entanglement. Specifically, we develop
this analogy by restricting operations through local superselection rules, and
show that such exotic phenomena as bound entanglement and activation arise
using pure states in this setting. This analogy aids in resolving several
conceptual puzzles in the study of entanglement under restricted operations. In
particular, we demonstrate that several types of quantum optical states that
possess confusing entanglement properties are analogous to bound entangled
states. Also, the classification of pure-state entanglement under restricted
operations can be much simpler than for mixed-state entanglement. For instance,
in the case of local Abelian superselection rules all questions concerning
distillability can be resolved.Comment: 10 pages, 2 figures; published versio
Decoherence of multi-dimensional entangled coherent states
For entangled states of light both the amount of entanglement and the
sensitivity to noise generally increase with the number of photons in the
state. The entanglement-sensitivity tradeoff is investigated for a particular
set of states, multi-dimensional entangled coherent states. Those states
possess an arbitrarily large amount of entanglement provided the number of
photons is at least of order . We calculate how fast that entanglement
decays due to photon absorption losses and how much entanglement is left. We
find that for very small losses the amount of entanglement lost is equal to
ebits per absorbed photon, irrespective of the amount
of pure-state entanglement one started with. In contrast, for larger losses
it tends to be the remaining amount of entanglement that is independent of .
This may provide a useful strategy for creating states with a fixed amount of
entanglement.Comment: 6 pages, 5 figure
Strongly focused light beams interacting with single atoms in free space
We construct 3-D solutions of Maxwell's equations that describe Gaussian
light beams focused by a strong lens. We investigate the interaction of such
beams with single atoms in free space and the interplay between angular and
quantum properties of the scattered radiation. We compare the exact results
with those obtained with paraxial light beams and from a standard input-output
formalism. We put our results in the context of quantum information processing
with single atoms.Comment: 9 pages, 9 figure
Two roles of relativistic spin operators
Operators that are associated with several important quantities, like angular
momentum, play a double role: they are both generators of the symmetry group
and ``observables.'' The analysis of different splittings of angular momentum
into "spin" and "orbital" parts reveals the difference between these two roles.
We also discuss a relation of different choices of spin observables to the
violation of Bell inequalities.Comment: RevTeX 4, 4 pages A discussion on relation of different choices of
spin observables to the observed violation of Bell inequalities is added,
some misprints corrected and the presentation is clarifie
- …
