193 research outputs found
Numerical Investigation of Light Scattering off Split-Ring Resonators
Recently, split ring-resonators (SRR's) have been realized experimentally in
the near infrared (NIR) and optical regime. In this contribution we numerically
investigate light propagation through an array of metallic SRR's in the NIR and
optical regime and compare our results to experimental results.
We find numerical solutions to the time-harmonic Maxwell's equations by using
advanced finite-element-methods (FEM). The geometry of the problem is
discretized with unstructured tetrahedral meshes. Higher order, vectorial
elements (edge elements) are used as ansatz functions. Transparent boundary
conditions and periodic boundary conditions are implemented, which allow to
treat light scattering problems off periodic structures.
This simulation tool enables us to obtain transmission and reflection spectra
of plane waves which are incident onto the SRR array under arbitrary angles of
incidence, with arbitrary polarization, and with arbitrary
wavelength-dependencies of the permittivity tensor. We compare the computed
spectra to experimental results and investigate resonances of the system.Comment: 9 pages, 8 figures (see original publication for images with a better
resolution
Negative effective permeability and left-handed materials at optical frequencies
We present here the design of nano-inclusions made of properly arranged
collections of plasmonic metallic nano-particles that may exhibit a resonant
magnetic dipole collective response in the visible domain. When such inclusions
are embedded in a host medium, they may provide metamaterials with negative
effective permeability at optical frequencies. We also show how the same
inclusions may provide resonant electric dipole response and, when combining
the two effects at the same frequencies, lefthanded materials with both
negative effective permittivity and permeability may be synthesized in the
optical domain with potential applications for imaging and nano-optics
applications.Comment: 11 pages, 6 figures; modified the format, added a figur
Magnetic metamaterials at telecommunication and visible frequencies
Arrays of gold split-rings with 50-nm minimum feature size and with an LC
resonance at 200-THz frequency (1500-nm wavelength) are fabricated. For normal
incidence conditions, they exhibit a pronounced fundamental magnetic mode,
arising from a coupling via the electric component of the incident light. For
oblique incidence, a coupling via the magnetic component is demonstrated as
well. Moreover, we identify a novel higher-order magnetic resonance at around
370 THz (800-nm wavelength) that evolves out of the Mie resonance for oblique
incidence. Comparison with theory delivers good agreement and also shows that
the structures allow for a negative magnetic permeability.Comment: 4 pages, 3 figure
Symmetry breaking and strong coupling in planar optical metamaterials
We demonstrate narrow transmission resonances at near-infrared wavelengths utilizing coupled asymmetric split-ring resonators (SRRs). By breaking the symmetry of the coupled SRR system, one can excite dark (subradiant) resonant modes that are not readily accessible to symmetric SRR structures. We also show that the quality factor of metamaterial resonant elements can be controlled by tailoring the degree of asymmetry. Changing the distance between asymmetric resonators changes the coupling strength and results in resonant frequency tuning due to resonance hybridization
Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials
We study the optical properties of metamaterials made from cut-wire pairs or
plate pairs. We obtain a more pronounced optical response for arrays of plate
pairs -- a geometry which also eliminates the undesired polarization anisotropy
of the cut-wire pairs. The measured optical spectra agree with simulations,
revealing negative magnetic permeability in the range of telecommunications
wavelengths. Thus, nanoscopic plate pairs might serve as an alternative to the
established split-ring resonator design.Comment: 3 pages, 4 figures, submitted to Opt. Let
The effect of gain saturation in a gain compensated perfect lens
The transmission of evanescent waves in a gain-compensated perfect lens is
discussed. In particular, the impact of gain saturation is included in the
analysis, and a method for calculating the fields of such nonlinear systems is
developed. Gain compensation clearly improves the resolution; however, a number
of nonideal effects arise as a result of gain saturation. The resolution
associated with the lens is strongly dependent on the saturation constant of
the active medium.Comment: to appear in J. Opt. Soc. Am.
Metamaterial inspired enhanced far-field transmission through a subwavelength nano-hole
In the present study, we first demonstrate the polarization and orientation dependent transmission response of split ring resonators at the infrared and visible band. Then, we numerically demonstrate a configuration for the enhancement of power passing through an electrically small hole. By using deep subwavelength optical split ring resonator antennas and couplers we achieved a 400-fold enhanced transmission from a subwavelength aperture area of the electrical size Λ 2/25. The power was transmitted to the far field with 3.9 dBi directivity at 300 THz. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) Transmission through a subwavelength aperture at the optical regime is quite low. The Letter by Alici and Ozbay shows how it can be enhanced and transferred to the far field by using a metamaterial inspired configuration composed of nano-scale split ring resonator antennas and couplers. A 400-fold power enhancement was achieved. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Nonlinear magnetoinductive transmission lines
Power transmission in one-dimensional nonlinear magnetic metamaterials driven
at one end is investigated numerically and analytically in a wide frequency
range. The nonlinear magnetic metamaterials are composed of varactor-loaded
split-ring resonators which are coupled magnetically through their mutual
inductances, forming thus a magnetoiductive transmission line. In the linear
limit, significant power transmission along the array only appears for
frequencies inside the linear magnetoinductive wave band. We present
analytical, closed form solutions for the magnetoinductive waves transmitting
the power in this regime, and their discrete frequency dispersion. When
nonlinearity is important, more frequency bands with significant power
transmission along the array may appear. In the equivalent circuit picture, the
nonlinear magnetoiductive transmission line driven at one end by a relatively
weak electromotive force, can be modeled by coupled
resistive-inductive-capacitive (RLC) circuits with voltage-dependent
capacitance. Extended numerical simulations reveal that power transmission
along the array is also possible in other than the linear frequency bands,
which are located close to the nonlinear resonances of a single nonlinear RLC
circuit. Moreover, the effectiveness of power transmission for driving
frequencies in the nonlinear bands is comparable to that in the linear band.
Power transmission in the nonlinear bands occurs through the linear modes of
the system, and it is closely related to the instability of a mode that is
localized at the driven site.Comment: 11 pages, 11 figures, submitted to International Journal of
Bifurcation and Chao
Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling
A planar slab of negative index material works as a superlens with
sub-diffraction-limited imaging resolution, since propagating waves are focused
and, moreover, evanescent waves are reconstructed in the image plane. Here, we
demonstrate a superlens for electric evanescent fields with low losses using
perovskites in the mid-infrared regime. The combination of near-field
microscopy with a tunable free-electron laser allows us to address precisely
the polariton modes, which are critical for super-resolution imaging. We
spectrally study the lateral and vertical distributions of evanescent waves
around the image plane of such a lens, and achieve imaging resolution of
wavelength/14 at the superlensing wavelength. Interestingly, at certain
distances between the probe and sample surface, we observe a maximum of these
evanescent fields. Comparisons with numerical simulations indicate that this
maximum originates from an enhanced coupling between probe and object, which
might be applicable for multifunctional circuits, infrared spectroscopy, and
thermal sensors.Comment: 20 pages, 6 figures, published as open access article in Nature
Communications (see http://www.nature.com/ncomms/
- …
