4,194 research outputs found

    Formability evaluation of double layer circular tube as a device with energy absorption capacity

    Get PDF
    Recently, earthquakes frequently occur in Japan. It is desired to promote seismic isolation technology of building. It has been found that newly designed composite material filled with low rigidity material to high rigidity material has significant energy absorbing capacity. However, it must have higher energy absorption capacity in order to respond to a large scale earthquake. Therefore, we have proposed an energy absorbing device with a double layer circular tube as a cell. In previous work, it has been shown that hysteresis occurs and absorbs the energy by friction that is generated between the outer layer and the inner layer. It is effective when inside shape of inner layer is defined as floral pattern. In this study, we considered to form the inner layer circular tube by forward and backward extrusion and to assemble with the outer layer circular tube at the same time. After forming, it is necessary to generate hysteresis around the entire circumference of the circular tube. Ideally, the inner layer circular tube is tightened to the outer layer circular tube. In this research, it was aimed to know the contact state between the outer layer and the inner layer after forming. Therefore, the influence of the presence or absence of the outer layer circular tube on formability was investigated. As a result, there was a tendency for large elastic strain to remain at the contact portion between the circular tubes when the outer layer circular tube was set. This means that the outer layer circular tube hinders elastic recovery of the inner layer circular tube. Therefore, it was confirmed that the inner layer circular tube was tightened by the outer layer circular tube. The same result was obtained when the inner shape of the inner layer circular tube was a flower pattern

    Is Galactic Star Formation Activity Increased During Cluster Mergers?

    Get PDF
    We have investigated the effect of pressure from intracluster medium (ICM) on disk galaxies in merging clusters. The ram-pressure on the galaxies rapidly increases when two clusters collide. This leads to stripping of the interstellar medium (ISM) and decrease of star formation rate (SFR) of the galaxies. On the other hand, the increase of SFR caused by compression of ISM is less significant. Thus, cluster merger does not trigger, but weakens star formation activity of the galaxies. In the central region of the colliding clusters, blue galaxies with high velocity should exist, although most of galaxies become red. Following the decrease of blue galaxy fraction in the clusters, the fraction of post-starburst galaxies increases. After merger, many galaxies in the cluster restart star formation activity and the segregation of blue and red galaxies becomes prominent.Comment: 5 pages, 5 figures, To be published in PASJ Letter

    Mechanism of Magnetism in Stacked Nanographite: Theoretical Study

    Full text link
    Antiferromagnetism in stacked nanographite is investigated with using the Hubbard-type model. The A-B stacking is favorable for the hexagonal nanographite with zigzag edges, in order that magnetism appears. Next, we find that the open shell electronic structures can be origins of the decreasing magnetic moment with the decrease of the inter-graphene distance, as experiments on adsorption of molecules suggest.Comment: 4 pages, 3 figure

    Berry's Phase for Standing Wave Near Graphene Edge

    Full text link
    Standing waves near the zigzag and armchair edges, and their Berry's phases are investigated. It is suggested that the Berry's phase for the standing wave near the zigzag edge is trivial, while that near the armchair edge is non-trivial. A non-trivial Berry's phase implies the presence of a singularity in parameter space. We have confirmed that the Dirac singularity is absent (present) in the parameter space for the standing wave near the zigzag (armchair) edge. The absence of the Dirac singularity has a direct consequence in the local density of states near the zigzag edge. The transport properties of graphene nanoribbons observed by recent numerical simulations and experiments are discussed from the point of view of the Berry's phases for the standing waves.Comment: 6 pages, 4 figure

    Polarization Dependence of Raman Spectra in Strained Graphene

    Full text link
    The polarization dependences of the G, D, and 2D (G') bands in Raman spectra at graphene bulk and edge are examined theoretically. The 2D and D bands have different selection rules at bulk and edge. At bulk, the 2D band intensity is maximum when the polarization of the scattered light is parallel to that of incident light, whereas the D band intensity does not have a polarization dependence. At edge, the 2D and D bands exhibit a selection rule similar to that of the G band proposed in a previous paper. We suggest that a constraint equation on the axial velocity caused by the graphene edge is essential for the dependence of the G band on the crystallographic orientation observed in the bulk of strained graphene. This is indicative of that the pseudospin and valleyspin in the bulk of graphene can not be completely free from the effect of surrounding edge. The status of the experiments on the G and D bands at the graphene edge is mentioned.Comment: 11 pages, 3 figure

    Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy

    Full text link
    The edge states that emerge at hydrogen-terminated zigzag edges embedded in dominant armchair edges of graphite are carefully investigated by ultrahigh-vacuum scanning tunneling microscopy (STM) measurements. The edge states at the zigzag edges have different spatial distributions dependent on the α\alpha- or β\beta-site edge carbon atoms. In the case that the defects consist of a short zigzag (or a short Klein) edge, the edge state is present also near the defects. The amplitude of the edge state distributing around the defects in an armchair edge often has a prominent hump in a direction determined by detailed local atomic structure of the edge. The tight binding calculation based on the atomic arrangements observed by STM reproduces the observed spatial distributions of the local density of states.Comment: 9 pages, 11 figures, accepted for Physical Review

    Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model

    Full text link
    We investigate the expected gravitational wave emission from coalescing supermassive black hole (SMBH) binaries resulting from mergers of their host galaxies. When galaxies merge, the SMBHs in the host galaxies sink to the center of the new merged galaxy and form a binary system. We employ a semi-analytic model of galaxy and quasar formation based on the hierarchical clustering scenario to estimate the amplitude of the expected stochastic gravitational wave background owing to inspiraling SMBH binaries and bursts owing to the SMBH binary coalescence events. We find that the characteristic strain amplitude of the background radiation is hc(f)1016(f/1μHz)2/3h_c(f) \sim 10^{-16} (f/1 \mu {\rm Hz})^{-2/3} for f1μHzf \lesssim 1 \mu {\rm Hz} just below the detection limit from measurements of the pulsar timing provided that SMBHs coalesce simultaneously when host galaxies merge. The main contribution to the total strain amplitude of the background radiation comes from SMBH coalescence events at 0<z<10<z<1. We also find that a future space-based gravitational wave interferometer such as the planned \textit{Laser Interferometer Space Antenna} ({\sl LISA}) might detect intense gravitational wave bursts associated with coalescence of SMBH binaries with total mass Mtot<107MM_{\rm tot} < 10^7 M_{\odot} at z2z \gtrsim 2 at a rate 1.0yr1 \sim 1.0 {\rm yr}^{-1}. Our model predicts that burst signals with a larger amplitude hburst1015h_{\rm burst} \sim 10^{-15} correspond to coalescence events of massive SMBH binary with total mass Mtot108MM_{\rm tot} \sim 10^8 M_{\odot} at low redshift z1 z \lesssim 1 at a rate 0.1yr1 \sim 0.1 {\rm yr}^{-1} whereas those with a smaller amplitude hburst1017h_{\rm burst} \sim 10^{-17} correspond to coalescence events of less massive SMBH binary with total mass Mtot106MM_{\rm tot} \sim 10^6 M_{\odot} at high redshift z3 z \gtrsim 3.Comment: Accepted for publication in ApJ. 11 pages, 7 figure

    Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    Get PDF
    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow
    corecore