66 research outputs found
Are pharmaceuticals removal and membrane fouling in electromembrane bioreactor affected by current density?
Abstract Pharmaceutical active compounds (PhACs) have been detected at significant concentrations in various natural and artificial aquatic environments. In this study, electro membrane bioreactor (eMBR) technology was used to treat simulated municipal wastewater containing widely-used pharmaceuticals namely amoxicillin (AMX), diclofenac (DCF) and carbamazepine (CBZ). The effects of varying current density on the removal of PhACs (AMX, DCF and CBZ) and conventional pollutants (chemical oxygen demand (COD), dissolved organic carbon (DOC), humic substances, ammonia nitrogen (NH 4 -N), nitrate nitrogen (NO 3 -N) and orthophosphate (PO 4 -P) species) were examined. High COD and DOC removal efficiencies (~100%) were obtained in all the experimental runs regardless of applied current density. In contrast, enhanced removal efficiencies for AMX, DCF and CBZ were achieved at high current densities. Membrane fouling rate in eMBR with respect to conventional MBR was reduced by 24, 44 and 45% at current densities of 0.3, 0.5 and 1.15 mA/cm 2 , respectively. The mechanism for pharmaceutical removal in this study proceeded by: (1) charge neutralization between negatively-charged pharmaceutical compounds and positive electro-generated aluminium coagulants to form larger particles and (2) size exclusion by membrane filtration
Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review
This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis, and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production
Application of electro-membrane bioreactor (eMBR) for the removal of pharmaceuticals from wastewater
Fuzzy Optimization for the Remediation of Ammonia: A Case Study Based on Electrochemical Oxidation
This case study covers the application of the fuzzy optimization in simultaneously satisfying various constraints that include the compliance of ammonia and nitrate concentrations with stringent environmental standards. Essential components in the multi-criteria decision-making analysis is in the utilization of the Box-Behnken design (BBD) response equations, cost equations and the cumulative uncertainty of response towards the sodium chloride dosage, current density and electrolysis time parameters. The energy consumption in the electrochemical oxidation of ammonia plays an essential role in influencing the total operating cost analysis. The determination of boundary limits based on the global optimum resulted in the complete ammonia removal and USD 64.0 operating cost as its maximum boundary limits and the 40.6% ammonia removal and USD 17.1 as its minimum boundary limits. Based on the fuzzy optimal results, the overall satisfaction level incurred a decrease in adhering with a lower ammonia standard concentration (10 mg/L at 80.3% vs. 1.9 mg/L at 76.1%) due to a higher energy consumption requirement. Global optimal fuzzy results showed to be highly cost efficient (232.5% lower) as compared to using BBD alone. This demonstrates the practicality of fuzzy optimization applications in the electrochemical reactions
Fuzzy Optimization for the Remediation of Ammonia: A Case Study Based on Electrochemical Oxidation
This case study covers the application of the fuzzy optimization in simultaneously satisfying various constraints that include the compliance of ammonia and nitrate concentrations with stringent environmental standards. Essential components in the multi-criteria decision-making analysis is in the utilization of the Box-Behnken design (BBD) response equations, cost equations and the cumulative uncertainty of response towards the sodium chloride dosage, current density and electrolysis time parameters. The energy consumption in the electrochemical oxidation of ammonia plays an essential role in influencing the total operating cost analysis. The determination of boundary limits based on the global optimum resulted in the complete ammonia removal and USD 64.0 operating cost as its maximum boundary limits and the 40.6% ammonia removal and USD 17.1 as its minimum boundary limits. Based on the fuzzy optimal results, the overall satisfaction level incurred a decrease in adhering with a lower ammonia standard concentration (10 mg/L at 80.3% vs. 1.9 mg/L at 76.1%) due to a higher energy consumption requirement. Global optimal fuzzy results showed to be highly cost efficient (232.5% lower) as compared to using BBD alone. This demonstrates the practicality of fuzzy optimization applications in the electrochemical reactions.</jats:p
Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors
This study investigates the removal of selected pharmaceuticals, as recalcitrant organic compounds, from synthetic wastewater using an electro-membrane bioreactor (eMBR). Diclofenac (DCF), carbamazepine (CBZ), and amoxicillin (AMX) were selected as representative drugs from three different therapeutic groups such as anti-inflammatory, anti-epileptic, and antibiotic, respectively. An environmentally relevant concentration (10 μg/L) of each compound was spiked into the synthetic wastewater, and then, the impact of appending electric field on the control of membrane fouling and the removal of conventional contaminants and pharmaceutical micropollutants were assessed. A conventional membrane bioreactor (MBR) was operated as a control test. A reduction of membrane fouling was observed in the eMBR with a 44% decrease of the fouling rate and a reduction of membrane fouling precursors. Humic substances (UV254), ammonia nitrogen (NH4-N), and orthophosphate (PO4-P) showed in eMBR removal efficiencies up to 90.68 ± 4.37, 72.10 ± 13.06, and 100%, respectively, higher than those observed in the MBR. A reduction of DCF, CBZ, and AMX equal to 75.25 ± 8.79, 73.84 ± 9.24, and 72.12 ± 10.11%, respectively, was found in the eMBR due to the enhanced effects brought by electrochemical processes, such as electrocoagulation, electrophoresis, and electrooxidation
Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors
Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review
This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis, and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production
- …
