548 research outputs found
Microgeneration and related energy technologies and practices for low-carbon buildings : Guest Editorial
Robust formation of morphogen gradients
We discuss the formation of graded morphogen profiles in a cell layer by
nonlinear transport phenomena, important for patterning developing organisms.
We focus on a process termed transcytosis, where morphogen transport results
from binding of ligands to receptors on the cell surface, incorporation into
the cell and subsequent externalization. Starting from a microscopic model, we
derive effective transport equations. We show that, in contrast to morphogen
transport by extracellular diffusion, transcytosis leads to robust ligand
profiles which are insensitive to the rate of ligand production
Unsteady CFD with Heat and Mass Transfer Simulation of Solar Adsorption Cooling System for Optimal Design and Performance
The purpose of the work described here was to investigate the effects of design and operating parameters on the performance of an adsorption cooling system. An unsteady Computational Fluid Dynamics (CFD) coupled with heat a mass transfer model was created for predicting the flow behaviour, pressure, temperature, and water adsorption distributions. Silica gel and zeolite 13X were both considered as possible adsorbents, though the study included silica gel given the lower working temperature range required for operation, which makes it more appropriate for residential cooling applications powered by solar heat. Validation of the unsteady computation results with experimental data found in the literature has shown a good agreement. Different computation cases during the desorption process were simulated in a parametric study that considered adsorbent bed thickness (lbed), heat exchanger tube thickness (b), heat transfer fluid (HTF) velocity (v), and adsorbent particle diameter (dp), to systematically analyse the effects of key geometrical and operating parameters on the system performance. The CFD results revealed the importance of v, lbed and dp while b had relatively insignificant changes in the system performance. Moreover, the coupled CFD with heat and mass transfer model is suitable as a valuable tool for simulating and optimising adsorption cooling systems and for predicting their performance
Healthy and Faulty Experimental Performance of a Typical HVAC System under Italian Climatic Conditions: Artificial Neural Network-Based Model and Fault Impact Assessment
The heating, ventilation, and air conditioning (HVAC) system serving the test room of the SENS i-Lab of the Department of Architecture and Industrial Design of the University of Campania Luigi Vanvitelli (Aversa, south of Italy) has been experimentally investigated through a series of tests performed during both summer and winter under both normal and faulty scenarios. In particular, five distinct typical faults have been artificially implemented in the HVAC system and analyzed during transient and steady-state operation. An optimal artificial neural network-based system model has been created in the MATLAB platform and verified by contrasting the experimental data with the predictions of twenty-two different neural network architectures. The selected artificial neural network architecture has been coupled with a dynamic simulation model developed by using the TRaNsient SYStems (TRNSYS) software platform with the main aims of (i) making available an experimental dataset characterized by labeled normal and faulty data covering a wide range of operating and climatic conditions; (ii) providing an accurate simulation tool able to generate operation data for assisting further research in fault detection and diagnosis of HVAC units; and (iii) evaluating the impact of selected faults on occupant indoor thermo-hygrometric comfort, temporal trends of key operating system parameters, and electric energy consumptions
Quantification of Information Encoded by Gene Expression Levels During Lifespan Modulation Under Broad-range Dietary Restriction in C. elegans
Sensory systems allow animals to detect, process, and respond to their environment. Food abundance is an environmental cue that has profound effects on animal physiology and behavior. Recently, we showed that modulation of longevity in the nematode Caenorhabditis elegans by food abundance is more complex than previously recognized. The responsiveness of the lifespan to changes in food level is determinedby specific genes that act by controlling information processing within a neural circuit. Our framework combines genetic analysis, high- throughput quantitative imaging and information theory. Here, we describe how these techniques can be used to characterize any gene that has a physiological relevance to broad-range dietary restriction. Specifically, this workflow is designed to reveal how a gene of interest regulates lifespan under broad-range dietary restriction; then to establish how the expression of the gene varies with food level; and finally, to provide an unbiased quantification of the amount of information conveyed by gene expression about food abundance in the environment. When several genes are examined simultaneously under the context of a neural circuit, this workflow can uncover the coding strategy employed by the circuit
Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis
Article available at http://dx.doi.org/10.1038/ncb1518Morphogens are secreted signalling molecules that govern many developmental processes1. In the Drosophila wing disc, the transforming growth factor (TGF) homologue Decapentaplegic (Dpp) forms a smooth gradient and specifies cell fate by conferring a defined value of morphogen activity. Thus, neighbouring cells have similar amounts of Dpp protein, and if a sharp discontinuity in Dpp activity is generated between these cells, Jun kinase (JNK)-dependent apoptosis is triggered to restore graded positional information2, 3. To date, it has been assumed that this apoptotic process is only activated when normal signalling is distorted. However, we now show that a similar process occurs during normal development: rupture in Dpp activity occurs during normal segmentation of the distal legs of Drosophila. This sharp boundary of Dpp signalling, independently of the absolute level of Dpp activity, induces a JNK—reaper-dependent apoptosis required for the morphogenesis of a particular structure of the leg, the joint. Our results show that Dpp could induce a developmental programme not only in a concentration dependent manner, but also by the creation of a sharp boundary of Dpp activity. Furthermore, the same process could be used either to restore a normal pattern in response to artificial disturbance or to direct a morphogenetic process.This work has been supported by grants from the Dirección General de Investigación Científica y Técnica (BMC 2002-00300), the Comunidad Autónoma de Madrid (08.1/0031/2001.1 and GR/SAL/0147/2004) and an Institutional Grant from the Fundación Ramón Areces. C.M. is a recipient of a Formación del Personal Universitario (F.P.U.) fellowship from the Ministerio de Educación y Ciencia.Peer reviewe
Recent Developments of Combined Heat Pump and Organic Rankine Cycle Energy Systems for Buildings
To develop efficient and lower emission heating and cooling systems, this book chapter focuses on interests for the innovative combination of a heat pump (HP) and organic Rankine cycle (ORC) for building applications. In this state-of-the-art survey, the potentials and advantages of combined HP-ORC systems have been investigated and discussed. Past works have examined various combinations, comprising indirectly-combined as series and parallel, directly-combined units, as well as reversible combination configurations. Following describing such arrangements, their performance is discussed. Considerations for optimising the overall architecture of these combined energy systems are pinpointed using these same sources, taking into account heat source and sink selection, expander/compressor units, selection of working fluids, control strategies, operating temperatures, thermal energy storage and managing more variable seasonal temperatures. Furthermore, experimental works present further functional problems and matters needing additional research, and assist to emphasise experimental techniques that can be utilised in this field of research. Finally, from the studies surveyed, some areas for future research were recommended
Energy, Environmental and Economic Performance of a Micro-trigeneration System upon Varying the Electric Vehicle Charging Profiles
The widespread adoption of electric vehicles and electric heat pumps would result in radically different household electrical demand characteristics, while also possibly posing a threat to the stability of the electrical grid. In this paper, a micro-trigeneration system (composed of a 6.0 kWel cogeneration device feeding a 4.5 kWcool electric air-cooled vapor compression water chiller) serving an Italian residential multi-family house was investigated by using the dynamic simulation software TRNSYS. The charging of an electric vehicle was considered by analyzing a set of seven electric vehicle charging profiles representing different scenarios. The simulations were performed in order to evaluate the capability of micro-cogeneration technology in: alleviating the impact on the electric infrastructure (a); saving primary energy (b); reducing the carbon dioxide equivalent emissions (c) and determining the operating costs in comparison to a conventional supply system based on separate energy production (d)
- …
