11 research outputs found

    Antimicrobial activity of some Iranian medicinal plants

    Get PDF
    The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation.

    MITIGATING ALUMINUM TOXICITY IN SEEDLINGS OF GLYCYRRHIZA GLABRA L. USING SILICON

    Full text link
    Background: Silicon is a beneficial element for the plant, with the primary role in increasing plant resistance to heavy metals' toxicity and considering the importance of phytoremediation to remove heavy metals from contaminated soils. It could be used for the exogenous application for alleviating the harmful effects of heavy metals on the plant. Aim: This study aimed to investigate the role of Silicon in balancing the destructive effects of aluminum on Glycyrrhiza glabra L. Methods: the seedlings were grown under a hydroponic system using Long Ashton nutrient solution; the 15-day-old seedlings were exposed to Silicon (0, 0.5, 1.5 mM) for 110 days and afterward stressed by interactions of aluminum chloride (AlCl3.6H2O; 0, 100, 250, and 400 M). Result and Discussion: the interactive effects of Silicon significantly ameliorated the negative consequences of aluminum toxicity. The combination of Si 1.5 mM and Al 400 ?M produced the highest biomass in shoots (45.67 g). The simple effect of Si 1.5 mM (12.14 g) made the highest shoot dry weight. On the other hand, the highest quantity of root fresh and dry weight (12.52 and 3.22 g, respectively) was observed in Si 1.5 mM. Among the treatments, Si 0.5 mM + Al 100 ?M had the most stem height (38 cm) among interaction treatments. Similarly, photosynthetic pigments affected by Silicon, Al 250 ?M + Si 1.5 mM had the highest content of chlorophyll a (1.91 ?g/g FW), while Al 400 + 1.5 mM indicated the most increase in chlorophyll b (0.78 ?g/g FW) among interaction effects. This treatment by producing 0.663 ?g/g FW yielded the highest carotenoid content. The highest proline content in shoots and roots (69.54 and 81.46 ?g/g FW, respectively) were observed in the interaction of Al 400 ?M and Si 1.5 mM. Additionally, this treatment was observed to have the highest concentration of catalase (1.22 U/mg protein). The lowest malondialdehyde content was marked in Si 1.5 mM + Al 100 ?M (0.702 nM/g FW). Conclusion: overall, Glycyrrhiza Glabra L. seems to have high Al phytoremediation potential that can be enhanced with the exogenous application of a moderate Silicon level.</jats:p

    MITIGATING ALUMINUM TOXICITY IN SEEDLINGS OF GLYCYRRHIZA GLABRA L. USING SILICON

    No full text
    Background: Silicon is a beneficial element for the plant, with the primary role in increasing plant resistance to heavy metals' toxicity and considering the importance of phytoremediation to remove heavy metals from contaminated soils. It could be used for the exogenous application for alleviating the harmful effects of heavy metals on the plant. Aim: This study aimed to investigate the role of Silicon in balancing the destructive effects of aluminum on Glycyrrhiza glabra L. Methods: the seedlings were grown under a hydroponic system using Long Ashton nutrient solution; the 15-day-old seedlings were exposed to Silicon (0, 0.5, 1.5 mM) for 110 days and afterward stressed by interactions of aluminum chloride (AlCl3.6H2O; 0, 100, 250, and 400 M). Result and Discussion: the interactive effects of Silicon significantly ameliorated the negative consequences of aluminum toxicity. The combination of Si 1.5 mM and Al 400 ?M produced the highest biomass in shoots (45.67 g). The simple effect of Si 1.5 mM (12.14 g) made the highest shoot dry weight. On the other hand, the highest quantity of root fresh and dry weight (12.52 and 3.22 g, respectively) was observed in Si 1.5 mM. Among the treatments, Si 0.5 mM + Al 100 ?M had the most stem height (38 cm) among interaction treatments. Similarly, photosynthetic pigments affected by Silicon, Al 250 ?M + Si 1.5 mM had the highest content of chlorophyll a (1.91 ?g/g FW), while Al 400 + 1.5 mM indicated the most increase in chlorophyll b (0.78 ?g/g FW) among interaction effects. This treatment by producing 0.663 ?g/g FW yielded the highest carotenoid content. The highest proline content in shoots and roots (69.54 and 81.46 ?g/g FW, respectively) were observed in the interaction of Al 400 ?M and Si 1.5 mM. Additionally, this treatment was observed to have the highest concentration of catalase (1.22 U/mg protein). The lowest malondialdehyde content was marked in Si 1.5 mM + Al 100 ?M (0.702 nM/g FW). Conclusion: overall, Glycyrrhiza Glabra L. seems to have high Al phytoremediation potential that can be enhanced with the exogenous application of a moderate Silicon level.</jats:p

    Effects of Salinity on the Development of Hydroponically Grown Borage (Borago officinalis L.) Male Gametophyte

    No full text
    In this research, the effect of salinity on the development of anther in hydroponically-grown borage was studied. Plants grown on hydroponic media are rapidly and transiently stressed. The overall objective of this research was to elucidate the microscopic effects of salinity on the formation, development, and structure of anthers. Flowers, at different developmental stages, were removed, fixed in FAA, embedded in paraffin, and cut into 7-10 μm slices using a microtome. Staining was carried out with Hematoxylin-Eosine, and the developmental stages of the control and NaCl-treated plants were compared. In control plants young anther consisted of 4 pollen sacs. Anther wall development followed the typical dicotyledonous pattern and was composed of an epidermal layer, an endothecium layer, and the tapetum. Microspore tetrads were tetrahedral. Salinity caused certain abnormalities during pollen developmental processes, such as the destruction of the anther wall and both the degeneration and production of abnormal pollen grains. A decrease in plant fecundity, which involves aborting pollen, followed by a change in resource from reproductive activities to metabolic reactions is possibly a general response to the deleterious effects of salinity.</p

    Evaluation of the CBL family gene expression under drought stress and virus attack in two susceptible and drought tolerant tomato cultivars using semi-quantitative PCR analysis

    No full text
    Eleven genes encoding Calcineurin B-Like proteins with a high degree of sequence conservation were identified using bioinformatics approaches in tomato. These proteins classified into five clusters including SlCBL1, SlCBL3, SlCBL4, SlCBL8 and SlCBL10 using orthology-based method of nomenclature. Sequence analysis showed that all five members of SlCBL1 and SlCBL4 contained a myristoylation conserved motif (MGXXXS/T) at their N-terminals. Semi-quantitative RT-PCR showed that among the SlCBL1 members, SlCBL1-3 up-regulated under both drought and virus stresses, as well as the combined treatment. Although, both SlCBL3-1 and SlCBL3-2 up-regulated under both drought and virus stresses in both susceptive and resistant cultivars, the combined stress did not have any additional effect on the expression. Among SlCBL4 members, only SlCBL4-1 up-regulated under drought or virus attack. There was a diverse pattern of expression between the two SlCBL8 members under different stresses in both cultivars. SlCBL10 showed no change in expression pattern under drought or virus stresses in susceptive cultivar and this gene showed to be up-regulated under drought in resistant cultivar. Overall, it was concluded that changes in the expression pattern of CBL genes under biotic and abiotic stresses seemingly induced various CBL/CIPK patways in suseptive or resistant plants

    DOI:10.2298/ABS1003633G ANTIMICROBIAL ACTIVITY OF SOME IRANIAN MEDICINAL PLANTS

    No full text
    Abstract- The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation
    corecore