388 research outputs found

    K-area, Hofer metric and geometry of conjugacy classes in Lie groups

    Full text link
    Given a closed symplectic manifold (M,ω)(M,\omega) we introduce a certain quantity associated to a tuple of conjugacy classes in the universal cover of the group Ham(M,ω){\hbox{\it Ham}} (M,\omega) by means of the Hofer metric on Ham(M,ω){\hbox{\it Ham}} (M,\omega). We use pseudo-holomorphic curves involved in the definition of the multiplicative structure on the Floer cohomology of a symplectic manifold (M,ω)(M,\omega) to estimate this quantity in terms of actions of some periodic orbits of related Hamiltonian flows. As a corollary we get a new way to obtain Agnihotri-Belkale-Woodward inequalities for eigenvalues of products of unitary matrices. As another corollary we get a new proof of the geodesic property (with respect to the Hofer metric) of Hamiltonian flows generated by certain autonomous Hamiltonians. Our main technical tool is K-area defined for Hamiltonian fibrations over a surface with boundary in the spirit of L.Polterovich's work on Hamiltonian fibrations over S2S^2.Comment: Corrected final version, accepted for publication in Inventiones Mathematica

    Quasi-states, quasi-morphisms, and the moment map

    Full text link
    We prove that symplectic quasi-states and quasi-morphisms on a symplectic manifold descend under symplectic reduction on a superheavy level set of a Hamiltonian torus action. Using a construction due to Abreu and Macarini, in each dimension at least four we produce a closed symplectic toric manifold with infinite dimensional spaces of symplectic quasi-states and quasi-morphisms, and a one-parameter family of non-displaceable Lagrangian tori. By using McDuff's method of probes, we also show how Ostrover and Tyomkin's method for finding distinct spectral quasi-states in symplectic toric Fano manifolds can also be used to find different superheavy toric fibers.Comment: 22 pages, 7 figures; v3: minor corrections, added remarks, and altered numbering scheme to match published version. To appear in International Mathematics Research Notice
    corecore