762 research outputs found
The Stability Region of the Two-User Interference Channel
The stable throughput region of the two-user interference channel is
investigated here. First, the stability region for the general case is
characterized. Second, we study the cases where the receivers treat
interference as noise or perform successive interference cancelation. Finally,
we provide conditions for the convexity/concavity of the stability region and
for which a certain interference management strategy leads to broader stability
region.Comment: Accepted for publication at IEEE Information Theory Workshop 201
Relay-assisted Multiple Access with Full-duplex Multi-Packet Reception
The effect of full-duplex cooperative relaying in a random access multiuser
network is investigated here. First, we model the self-interference incurred
due to full-duplex operation, assuming multi-packet reception capabilities for
both the relay and the destination node. Traffic at the source nodes is
considered saturated and the cooperative relay, which does not have packets of
its own, stores a source packet that it receives successfully in its queue when
the transmission to the destination has failed. We obtain analytical
expressions for key performance metrics at the relay, such as arrival and
service rates, stability conditions, and average queue length, as functions of
the transmission probabilities, the self interference coefficient, and the
links' outage probabilities. Furthermore, we study the impact of the relay node
and the self-interference coefficient on the per-user and aggregate throughput,
and the average delay per packet. We show that perfect self-interference
cancelation plays a crucial role when the SINR threshold is small, since it may
result to worse performance in throughput and delay comparing with the
half-duplex case. This is because perfect self-interference cancelation can
cause an unstable queue at the relay under some conditions.Comment: Accepted for publication in the IEEE Transactions on Wireless
Communication
On the Stability of Random Multiple Access with Stochastic Energy Harvesting
In this paper, we consider the random access of nodes having energy
harvesting capability and a battery to store the harvested energy. Each node
attempts to transmit the head-of-line packet in the queue if its battery is
nonempty. The packet and energy arrivals into the queue and the battery are all
modeled as a discrete-time stochastic process. The main contribution of this
paper is the exact characterization of the stability region of the packet
queues given the energy harvesting rates when a pair of nodes are randomly
accessing a common channel having multipacket reception (MPR) capability. The
channel with MPR capability is a generalized form of the wireless channel
modeling which allows probabilistic receptions of the simultaneously
transmitted packets. The results obtained in this paper are fairly general as
the cases with unlimited energy for transmissions both with the collision
channel and the channel with MPR capability can be derived from ours as special
cases. Furthermore, we study the impact of the finiteness of the batteries on
the achievable stability region.Comment: The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Saint Petersburg, Russia, Aug.
201
- …
