762 research outputs found

    The Stability Region of the Two-User Interference Channel

    Full text link
    The stable throughput region of the two-user interference channel is investigated here. First, the stability region for the general case is characterized. Second, we study the cases where the receivers treat interference as noise or perform successive interference cancelation. Finally, we provide conditions for the convexity/concavity of the stability region and for which a certain interference management strategy leads to broader stability region.Comment: Accepted for publication at IEEE Information Theory Workshop 201

    Relay-assisted Multiple Access with Full-duplex Multi-Packet Reception

    Full text link
    The effect of full-duplex cooperative relaying in a random access multiuser network is investigated here. First, we model the self-interference incurred due to full-duplex operation, assuming multi-packet reception capabilities for both the relay and the destination node. Traffic at the source nodes is considered saturated and the cooperative relay, which does not have packets of its own, stores a source packet that it receives successfully in its queue when the transmission to the destination has failed. We obtain analytical expressions for key performance metrics at the relay, such as arrival and service rates, stability conditions, and average queue length, as functions of the transmission probabilities, the self interference coefficient, and the links' outage probabilities. Furthermore, we study the impact of the relay node and the self-interference coefficient on the per-user and aggregate throughput, and the average delay per packet. We show that perfect self-interference cancelation plays a crucial role when the SINR threshold is small, since it may result to worse performance in throughput and delay comparing with the half-duplex case. This is because perfect self-interference cancelation can cause an unstable queue at the relay under some conditions.Comment: Accepted for publication in the IEEE Transactions on Wireless Communication

    On the Stability of Random Multiple Access with Stochastic Energy Harvesting

    Full text link
    In this paper, we consider the random access of nodes having energy harvesting capability and a battery to store the harvested energy. Each node attempts to transmit the head-of-line packet in the queue if its battery is nonempty. The packet and energy arrivals into the queue and the battery are all modeled as a discrete-time stochastic process. The main contribution of this paper is the exact characterization of the stability region of the packet queues given the energy harvesting rates when a pair of nodes are randomly accessing a common channel having multipacket reception (MPR) capability. The channel with MPR capability is a generalized form of the wireless channel modeling which allows probabilistic receptions of the simultaneously transmitted packets. The results obtained in this paper are fairly general as the cases with unlimited energy for transmissions both with the collision channel and the channel with MPR capability can be derived from ours as special cases. Furthermore, we study the impact of the finiteness of the batteries on the achievable stability region.Comment: The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Saint Petersburg, Russia, Aug. 201
    corecore