21 research outputs found

    The role of diet in the aetiopathogenesis of inflammatory bowel disease

    Get PDF
    Crohn’s disease and ulcerative colitis, collectively known as IBD, are chronic inflammatory disorders of the gastrointestinal tract. Although the aetiopathogenesis of IBD is largely unknown, it is widely thought that diet has a crucial role in the development and progression of IBD. Indeed, epidemiological and genetic association studies have identified a number of promising dietary and genetic risk factors for IBD. These preliminary studies have led to major interest in investigating the complex interaction between diet, host genetics, the gut microbiota and immune function in the pathogenesis of IBD. In this Review, we discuss the recent epidemiological, gene–environment interaction, microbiome and animal studies that have explored the relationship between diet and the risk of IBD. In addition, we highlight the limitations of these prior studies, in part by explaining their contradictory findings, and review future directions

    Association analyses based on false discovery rate implicate new loci for coronary artery disease

    Get PDF
    Genome-wide association studies (GWAS) in coronary artery disease (CAD) had identified 66 loci at 'genome-wide significance' (P < 5 × 10(-8)) at the time of this analysis, but a much larger number of putative loci at a false discovery rate (FDR) of 5% (refs. 1,2,3,4). Here we leverage an interim release of UK Biobank (UKBB) data to evaluate the validity of the FDR approach. We tested a CAD phenotype inclusive of angina (SOFT; ncases = 10,801) as well as a stricter definition without angina (HARD; ncases = 6,482) and selected cases with the former phenotype to conduct a meta-analysis using the two most recent CAD GWAS. This approach identified 13 new loci at genome-wide significance, 12 of which were on our previous list of loci meeting the 5% FDR threshold, thus providing strong support that the remaining loci identified by FDR represent genuine signals. The 304 independent variants associated at 5% FDR in this study explain 21.2% of CAD heritability and identify 243 loci that implicate pathways in blood vessel morphogenesis as well as lipid metabolism, nitric oxide signaling and inflammation

    Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations : A transethnic genome-wide meta-analysis

    Get PDF
    Background Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes. Methods & findings Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 x 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI0.55-0.74) of African American adults with T2Dto remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants. Conclusions As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.Peer reviewe

    Large-scale exome array summary statistics resources for glycemic traits to aid effector gene prioritization.

    Get PDF
    BACKGROUND: Genome-wide association studies for glycemic traits have identified hundreds of loci associated with these biomarkers of glucose homeostasis. Despite this success, the challenge remains to link variant associations to genes, and underlying biological pathways. METHODS: To identify coding variant associations which may pinpoint effector genes at both novel and previously established genome-wide association loci, we performed meta-analyses of exome-array studies for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 participants), fasting glucose (FG, up to 129,665 participants), fasting insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge (2hGlu, up to 57,878). In addition, we performed network and pathway analyses. RESULTS: Single-variant and gene-based association analyses identified coding variant associations at more than 60 genes, which when combined with other datasets may be useful to nominate effector genes. Network and pathway analyses identified pathways related to insulin secretion, zinc transport and fatty acid metabolism. HbA1c associations were strongly enriched in pathways related to blood cell biology. CONCLUSIONS: Our results provided novel glycemic trait associations and highlighted pathways implicated in glycemic regulation. Exome-array summary statistic results are being made available to the scientific community to enable further discoveries

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.</p

    Publisher Correction: Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF

    Association analyses based on false discovery rate implicate new loci for coronary artery disease

    No full text
    Genome-wide association studies (GWAS) in coronary artery disease (CAD) had identified 66 loci at 'genome-wide significance' (P < 5 × 10(-8)) at the time of this analysis, but a much larger number of putative loci at a false discovery rate (FDR) of 5% (refs. 1,2,3,4). Here we leverage an interim release of UK Biobank (UKBB) data to evaluate the validity of the FDR approach. We tested a CAD phenotype inclusive of angina (SOFT; ncases = 10,801) as well as a stricter definition without angina (HARD; ncases = 6,482) and selected cases with the former phenotype to conduct a meta-analysis using the two most recent CAD GWAS. This approach identified 13 new loci at genome-wide significance, 12 of which were on our previous list of loci meeting the 5% FDR threshold, thus providing strong support that the remaining loci identified by FDR represent genuine signals. The 304 independent variants associated at 5% FDR in this study explain 21.2% of CAD heritability and identify 243 loci that implicate pathways in blood vessel morphogenesis as well as lipid metabolism, nitric oxide signaling and inflammation

    Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.

    No full text
    Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility

    Large-scale exome array summary statistics resources for glycemic traits to aid effector gene prioritization.

    No full text
    BackgroundGenome-wide association studies for glycemic traits have identified hundreds of loci associated with these biomarkers of glucose homeostasis. Despite this success, the challenge remains to link variant associations to genes, and underlying biological pathways.MethodsTo identify coding variant associations which may pinpoint effector genes at both novel and previously established genome-wide association loci, we performed meta-analyses of exome-array studies for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 participants), fasting glucose (FG, up to 129,665 participants), fasting insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge (2hGlu, up to 57,878). In addition, we performed network and pathway analyses.ResultsSingle-variant and gene-based association analyses identified coding variant associations at more than 60 genes, which when combined with other datasets may be useful to nominate effector genes. Network and pathway analyses identified pathways related to insulin secretion, zinc transport and fatty acid metabolism. HbA1c associations were strongly enriched in pathways related to blood cell biology.ConclusionsOur results provided novel glycemic trait associations and highlighted pathways implicated in glycemic regulation. Exome-array summary statistic results are being made available to the scientific community to enable further discoveries
    corecore