920 research outputs found

    The St{\o}rmer problem for an aligned rotator

    Full text link
    The effective potential energy of the particles in the field of rotating uniformly magnetized celestial body is investigated. The axis of rotation coincides with the axis of the magnetic field. Electromagnetic field of the body is composed of a dipole magnetic and quadrupole electric fields. The geometry of the trapping regions is studied as a function of the magnetic field magnitude and the rotation speed of the body. Examples of the potential energy topology for different values of these parameters are given. The main difference from the classical St{\o}rmer problem is that the single toroidal trapping region predicted by St{\o}rmer is divided into equatorial and off-equatorial trapping regions. Applicability of the idealized model of a rotating uniformly magnetized sphere with a vacuum magnetosphere to real celestial bodies is discussed.Comment: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society Published by Oxford University Pres

    The horizon and its charges in the first order gravity

    Get PDF
    In this work the algebra of charges of diffeomorphisms at the horizon of generic black holes is analyzed within first order gravity. This algebra reproduces the algebra of diffeomorphisms at the horizon, (Diff(S^1)), without central extension

    QED on Curved Background and on Manifolds with Boundaries: Unitarity versus Covariance

    Get PDF
    Some recent results show that the covariant path integral and the integral over physical degrees of freedom give contradicting results on curved background and on manifolds with boundaries. This looks like a conflict between unitarity and covariance. We argue that this effect is due to the use of non-covariant measure on the space of physical degrees of freedom. Starting with the reduced phase space path integral and using covariant measure throughout computations we recover standard path integral in the Lorentz gauge and the Moss and Poletti BRST-invariant boundary conditions. We also demonstrate by direct calculations that in the approach based on Gaussian path integral on the space of physical degrees of freedom some basic symmetries are broken.Comment: 29 pages, LaTEX, no figure

    Model Calculations for the Two-Fragment Electro-Disintegration of 4^4He

    Get PDF
    Differential cross sections for the electro-disintegration process e+4He3H+p+ee + {^4He} \longrightarrow {^3H}+ p + e' are calculated, using a model in which the final state interaction is included by means of a nucleon-nucleus (3+1) potential constructed via Marchenko inversion. The required bound-state wave functions are calculated within the integrodifferential equation approach (IDEA). In our model the important condition that the initial bound state and the final scattering state are orthogonal is fulfilled. The sensitivity of the cross section to the input p3Hp{^3H} interaction in certain kinematical regions is investigated. The approach adopted could be useful in reactions involving few cluster systems where effective interactions are not well known and exact methods are presently unavailable. Although, our Plane-Wave Impulse Approximation results exhibit, similarly to other calculations, a dip in the five-fold differential cross-section around a missing momentum of 450MeV/c\sim 450 MeV/c, it is argued that this is an artifact of the omission of re-scattering four-nucleon processes.Comment: 16 pages, 6 figures, accepted for publication by Phys.Rev.

    Sur la p-dimension des corps

    Full text link
    Let A be an excellent integral henselian local noetherian ring, k its residue field of characteristic p>0 and K its fraction field. Using an algebraization technique introduced by the first named author, and the one-dimension case already proved by Kazuya KATO, we prove the following formula: cd_p(K) = dim(A) + p-rank(k), if k is separably closed and K of characteristic zero. A similar statement is valid without those assumptions on k and K

    Feynman Graphs and Generalized Eikonal Approach to High Energy Knock-Out Processes

    Full text link
    The cross section of hard semi-exclusive A(e,eN)(A1)A(e,e'N)(A-1) reactions for fixed missing energy and momentum is calculated within the eikonal approximation. Relativistic dynamics and kinematics of high energy processes are unambiguously accounted for by using the analysis of appropriate Feynman diagrams. A significant dependence of the final state interactions on the missing energy is found, which is important for interpretation of forthcoming color transparency experiments. A new, more stringent kinematic restriction on the region where the contribution of short-range nucleon correlations is enhanced in semi-exclusive knock-out processes is derived. It is also demonstrated that the use of light-cone variables leads to a considerable simplification of the description of high-energy knock-out reactions.Comment: 24 pages, LaTex, two Latex and two ps figures, uses FEYNMAN.tex and psfig.sty. Revisied version to appear in Phys. Rev.

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    corecore