843 research outputs found
BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference.
We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by leveraging an easily obtainable prior knowledge on the cell-type composition distribution of the studied tissue. We show mathematically and empirically that alternative methods which attempt to infer cell counts without methylation reference only capture linear combinations of cell counts rather than provide one component per cell type. Our approach allows the construction of components such that each component corresponds to a single cell type, and provides a new opportunity to investigate cell compositions in genomic studies of tissues for which it was not possible before
Recommended from our members
Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology.
High costs and technical limitations of cell sorting and single-cell techniques currently restrict the collection of large-scale, cell-type-specific DNA methylation data. This, in turn, impedes our ability to tackle key biological questions that pertain to variation within a population, such as identification of disease-associated genes at a cell-type-specific resolution. Here, we show mathematically and empirically that cell-type-specific methylation levels of an individual can be learned from its tissue-level bulk data, conceptually emulating the case where the individual has been profiled with a single-cell resolution and then signals were aggregated in each cell population separately. Provided with this unprecedented way to perform powerful large-scale epigenetic studies with cell-type-specific resolution, we revisit previous studies with tissue-level bulk methylation and reveal novel associations with leukocyte composition in blood and with rheumatoid arthritis. For the latter, we further show consistency with validation data collected from sorted leukocyte sub-types
Rheumatoid Arthritis Naive T Cells Share Hypermethylation Sites With Synoviocytes.
ObjectiveTo determine whether differentially methylated CpGs in synovium-derived fibroblast-like synoviocytes (FLS) of patients with rheumatoid arthritis (RA) were also differentially methylated in RA peripheral blood (PB) samples.MethodsFor this study, 371 genome-wide DNA methylation profiles were measured using Illumina HumanMethylation450 BeadChips in PB samples from 63 patients with RA and 31 unaffected control subjects, specifically in the cell subsets of CD14+ monocytes, CD19+ B cells, CD4+ memory T cells, and CD4+ naive T cells.ResultsOf 5,532 hypermethylated FLS candidate CpGs, 1,056 were hypermethylated in CD4+ naive T cells from RA PB compared to control PB. In analyses of a second set of CpG candidates based on single-nucleotide polymorphisms from a genome-wide association study of RA, 1 significantly hypermethylated CpG in CD4+ memory T cells and 18 significant CpGs (6 hypomethylated, 12 hypermethylated) in CD4+ naive T cells were found. A prediction score based on the hypermethylated FLS candidates had an area under the curve of 0.73 for association with RA case status, which compared favorably to the association of RA with the HLA-DRB1 shared epitope risk allele and with a validated RA genetic risk score.ConclusionFLS-representative DNA methylation signatures derived from the PB may prove to be valuable biomarkers for the risk of RA or for disease status
- …
