19,131 research outputs found
Noise-Induced Transition from Translational to Rotational Motion of Swarms
We consider a model of active Brownian agents interacting via a harmonic
attractive potential in a two-dimensional system in the presence of noise. By
numerical simulations, we show that this model possesses a noise-induced
transition characterized by the breakdown of translational motion and the onset
of swarm rotation as the noise intensity is increased. Statistical properties
of swarm dynamics in the weak noise limit are further analytically
investigated.Comment: 7 pages, 7 figure
The Midpoint Rule as a Variational--Symplectic Integrator. I. Hamiltonian Systems
Numerical algorithms based on variational and symplectic integrators exhibit
special features that make them promising candidates for application to general
relativity and other constrained Hamiltonian systems. This paper lays part of
the foundation for such applications. The midpoint rule for Hamilton's
equations is examined from the perspectives of variational and symplectic
integrators. It is shown that the midpoint rule preserves the symplectic form,
conserves Noether charges, and exhibits excellent long--term energy behavior.
The energy behavior is explained by the result, shown here, that the midpoint
rule exactly conserves a phase space function that is close to the Hamiltonian.
The presentation includes several examples.Comment: 11 pages, 8 figures, REVTe
Concepts, Developments and Advanced Applications of the PAX Toolkit
The Physics Analysis eXpert (PAX) is an open source toolkit for high energy
physics analysis. The C++ class collection provided by PAX is deployed in a
number of analyses with complex event topologies at Tevatron and LHC. In this
article, we summarize basic concepts and class structure of the PAX kernel. We
report about the most recent developments of the kernel and introduce two new
PAX accessories. The PaxFactory, that provides a class collection to facilitate
event hypothesis evolution, and VisualPax, a Graphical User Interface for PAX
objects
A Development Environment for Visual Physics Analysis
The Visual Physics Analysis (VISPA) project integrates different aspects of
physics analyses into a graphical development environment. It addresses the
typical development cycle of (re-)designing, executing and verifying an
analysis. The project provides an extendable plug-in mechanism and includes
plug-ins for designing the analysis flow, for running the analysis on batch
systems, and for browsing the data content. The corresponding plug-ins are
based on an object-oriented toolkit for modular data analysis. We introduce the
main concepts of the project, describe the technical realization and
demonstrate the functionality in example applications
Automated Reconstruction of Particle Cascades in High Energy Physics Experiments
We present a procedure for reconstructing particle cascades from event data
measured in a high energy physics experiment. For evaluating the hypothesis of
a specific physics process causing the observed data, all possible
reconstruction versions of the scattering process are constructed from the
final state objects. We describe the procedure as well as examples of physics
processes of different complexity studied at hadron-hadron colliders. We
estimate the performance by 20 microseconds per reconstructed decay vertex, and
0.6 kByte per reconstructed particle in the decay trees.Comment: 8 pages, 2 figures. Submitted to Computational Science & Discover
Focused use of drug screening in overdose patients increases impact on management.
UNLABELLED: Drug poisoning is a common cause for attendance in the emergency department. Several toxicology centres suggest performing urinary drug screens, even though they rarely influence patient management.
STUDY OBJECTIVES: Measuring the impact on patient management, in a University Emergency Department with approximately 40 000 admissions annually, of a rapid urinary drug screening test using specifically focused indications. Drug screening was restricted to patients having a first psychotic episode or cases demonstrating respiratory failure, coma, seizures, a sympathomimetic toxidrome, severe opiate overdose necessitating naloxone, hypotension, ventricular arrhythmia, acquired long QT or QRS >100 ms, and high-degree heart block.
METHODS: Retrospective analysis of Triage® TOX drug screen tests performed between September 2009 and November 2011, and between January 2013 and March 2014.
RESULTS: A total of 262 patients were included, mean age 35 ± 14.6 (standard deviation) years, 63% men; 29% poisoning with alcohol, and 2.3% deaths. Indications for testing were as follows: 34% were first psychotic episodes; 20% had acute respiratory failure; 16% coma; 8% seizures; 8% sympathomimetic toxidromes; 7% severe opioid toxidromes; 4% hypotension; 3% ventricular arrhythmias or acquired long QT intervals on electrocardiogram. A total of 78% of the tests were positive (median two substances, maximum five). The test resulted in drug-specific therapy in 6.1%, drug specific diagnostic tests in 13.3 %, prolonged monitoring in 10.7% of methadone-positive tests, and psychiatric admission in 4.2%. Overall, 34.3% tests influenced patient management.
CONCLUSIONS: In contrast to previous studies showing modest effects of toxicological testing, restricted use of rapid urinary drug testing increases the impact on management of suspected overdose patients in the ED
Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness.
Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and the proper engagement of its intracellular signal effector proteins. Src homology (SH) 2 domain-containing leukocyte protein of 65 kDa (SLP65) is the key scaffold protein mediating BCR signaling. In resting B cells, SLP65 colocalizes with Cbl-interacting protein of 85 kDa (CIN85) in cytoplasmic granules whose formation is not fully understood. Here we show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles into droplets via vesicle binding of SLP65 and promiscuous interactions between nine SH3 domains of the trimeric CIN85 and the proline-rich motifs (PRMs) of SLP65. Vesicles are clustered and the dynamical structure of SLP65 persists in the droplet phase in vitro. Our results demonstrate that phase separation driven by concerted transient interactions between scaffold proteins and vesicles is a cellular mechanism to concentrate and organize signal transducers
Radiation hardness of CMS pixel barrel modules
Pixel detectors are used in the innermost part of the multi purpose
experiments at LHC and are therefore exposed to the highest fluences of
ionising radiation, which in this part of the detectors consists mainly of
charged pions. The radiation hardness of all detector components has thoroughly
been tested up to the fluences expected at the LHC. In case of an LHC upgrade,
the fluence will be much higher and it is not yet clear how long the present
pixel modules will stay operative in such a harsh environment. The aim of this
study was to establish such a limit as a benchmark for other possible detector
concepts considered for the upgrade.
As the sensors and the readout chip are the parts most sensitive to radiation
damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout
chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to
6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq.
After irradiation the response of the system to beta particles from a Sr-90
source was measured to characterise the charge collection efficiency of the
sensor. Radiation induced changes in the readout chip were also measured. The
results show that the present pixel modules can be expected to be still
operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq
still see the beta particles. However, further tests are needed to confirm
whether a stable operation with high particle detection efficiency is possible
after such a high fluence.Comment: Contribution to the 11th European Symposium on Semiconductor
Detectors June 7-11, 2009 Wildbad Kreuth, German
Перспективы развития биотехнологий
В статье затронуты проблемы демографического кризиса. Рассмотрены вопросы развития биотехнологий, а так же существующие виды биотехнологий. Более глубоко рассмотрен такой вид биотехнологии как биомедицина, представлены существующие наработки ученых в этой сфере. При изучении был сделан вывод, что развитие биотехнологии, в честности биомедицины приведет к повышению продолжительности жизни, а вследствие решения демографической проблемы.The article touches upon the problems of the demographic crisis. The questions of development of biotechnologies, as well as existing types of biotechnologies are considered. Deeply considered this kind of biotechnology as biomedicine, presents the existing developments of scientists in this field. The study concluded that the development of biotechnology, in the honesty of biomedicine, will lead to an increase in life expectancy, and as a result of solving the demographic problem
Applying MAPP Algorithm for Cooperative Path Finding in Urban Environments
The paper considers the problem of planning a set of non-conflict
trajectories for the coalition of intelligent agents (mobile robots). Two
divergent approaches, e.g. centralized and decentralized, are surveyed and
analyzed. Decentralized planner - MAPP is described and applied to the task of
finding trajectories for dozens UAVs performing nap-of-the-earth flight in
urban environments. Results of the experimental studies provide an opportunity
to claim that MAPP is a highly efficient planner for solving considered types
of tasks
- …
