372 research outputs found
Discussing ethical issues in school science: An investigation into the opportunities to practise and develop arguments offered by online and face-to-face discussions
Learning to Teach Argumentation: Research and development in the science classroom
The research reported in this study focuses on an investigation into the teaching of argumentation in secondary science classrooms. Over a one-year period, a group of 12 teachers from schools in the greater London area attended a series of workshops to develop materials and strategies to support the teaching of argumentation in scientific contexts. Data were collected at the beginning and end of the year by audio and video recording lessons where the teachers attempted to implement argumentation. To assess the quality of argumentation, analytical tools derived from Toulmin's argument pattern (TAP) were developed and applied to classroom transcripts. Analysis shows there was development in teachers' use of argumentation across the year. Results indicate that the pattern of use of argumentation is teacher-specific, as is the nature of change. To inform future professional development programmes, transcripts of five teachers, three showing a significant change and two no change, were analysed in more detail to identify features of teachers' oral contributions that facilitated and supported argumentation. The analysis showed that all teachers attempted to encourage a variety of processes involved in argumentation and that the teachers whose lessons included the highest quality of argumentation (TAP analysis) also encouraged higher order processes in their teaching. The analysis of teachers' facilitation of argumentation has helped to guide the development of in-service materials and to identify the barriers to learning in the professional development of less experienced teachers
Lifetime determination of excited states in Cd-106
Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps
Learning to Teach About Ideas and Evidence in Science : The Student Teacher as Change Agent
A collaborative curriculum development project was set up to address the lack of good examples of teaching about ideas and evidence and the nature of science encountered by student teachers training to teach in the age range 11-16 in schools in England. Student and teacher-mentor pairs devised, taught and evaluated novel lessons and approaches. The project design required increasing levels of critique through cycles of teaching, evaluation and revision of lessons. Data were gathered from interviews and students' reports to assess the impact of the project on student teachers and to what extent any influences survived when they gained their first teaching posts. A significant outcome was the perception of teaching shifting from the delivery of standard lessons in prescribed ways to endeavours demanding creativity and decision-making. Although school-based factors limited newly qualified teachers' chances to use new lessons and approaches and therefore act as change-agents in schools, the ability to critique curriculum materials and the recognition of the need to create space for professional dialogue were durable gains
Analytic frameworks for assessing dialogic argumentation in online learning environments
Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation
Reconceptualised family resemblance approach to nature of science in pre-service science teacher education
A recent framework on nature of science (NOS) is the Family Resemblance Approach (FRA). FRA presents NOS as a cognitive-epistemic and social-institutional system with a set of categories: aims and values, scientific methods, scientific practices, scientific knowledge and social-institutional aspects of science. Although FRA has been problematised philosophically and its implications for science education have been considered by science educators, its empirical adaptations in science education are limited. In order to illustrate the educational adaptations of FRA, we refer to Reconceptualised Family Resemblance Approach to Nature of Science or RFN. We present a study based on a funded pre-service science teacher education project whose aim was to design, implement and evaluate the impact of RFN strategies. Fifteen pre-service teachers participated in a 14-week teacher education intervention that infused RFN. A 70-item questionnaire was designed to investigate the outcomes of the teacher education intervention. Individual interviews with pre-service teachers were also conducted. Quantitative and qualitative data analysis suggest that the teacher education intervention had an overall significant impact on pre-service teachers’ views of NOS. The paper contributes to the understanding of how NOS can be incorporated in science teacher education using a new orientation to NOS based on FRA
Argumentation in school science : Breaking the tradition of authoritative exposition through a pedagogy that promotes discussion and reasoning
The value of argumentation in science education has become internationally recognised and has been the subject of many research studies in recent years. Successful introduction of argumentation activities in learning contexts involves extending teaching goals beyond the understanding of facts and concepts, to include an emphasis on cognitive and metacognitive processes, epistemic criteria and reasoning. The authors focus on the difficulties inherent in shifting a tradition of teaching from one dominated by authoritative exposition to one that is more dialogic, involving small-group discussion based on tasks that stimulate argumentation. The paper builds on previous research on enhancing the quality of argument in school science, to focus on how argumentation activities have been designed, with appropriate strategies, resources and modelling, for pedagogical purposes. The paper analyses design frameworks, their contexts and lesson plans, to evaluate their potential for enhancing reasoning through foregrounding the processes of argumentation. Examples of classroom dialogue where teachers adopt the frameworks/plans are analysed to show how argumentation processes are scaffolded. The analysis shows that several layers of interpretation are needed and these layers need to be aligned for successful implementation. The analysis serves to highlight the potential and limitations of the design frameworks
Realistic simulations of the AGATA Demonstrator+PRISMA spectrometer
Abstract The performance of the AGATA Demonstrator Array coupled to the PRISMA magnetic spectrometer has been evaluated consistently by using detailed Monte Carlo simulations of the two devices. Results for the multi-nucleon transfer reaction 48Ca+208Pb at 310 MeV beam energy are presented and discussed in this study. The present results suggest that the Doppler correction capabilities of the AGATA+PRISMA setup will be very close to the intrinsic energy resolution of the germanium detectors
Investigation of Eight Grade Students' Knowledge Level about Global Environmental Problems
Abstract This study aims to identify the knowledge level of eight grade students about global problems like greenhouse effect, the deformation of the ozone layer, acid rains and the destruction of biological diversity to analyze the gender and location factor of the students' knowledge level about global environmental problems. 201 randomly selected eight grade students from central schools of Ankara and Burdur attended to this study. 20 item-scale is used as data collection tool in the research. The percentage and frequency values of the students' answers are analyzed. The sum of points is tested for analyzing the variation of gender and location of education factor of students. The conclusive data obtained from this research points out that students have very low knowledge level about reasons and the negative effects of some global environmental problems. In the conclusion of this research; the total points which students get from the global environmental problems survey noticeably vary by the location where they are educated but not changed by the gender factor
Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA
The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large (Formula presented.) -ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- (Formula presented.) discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array
- …
