109 research outputs found
Fault kinematics in northern Central America and coupling along the subduction interface of the Cocos Plate, from GPS data in Chiapas (Mexico), Guatemala and El Salvador
International audienceNew GPS measurements in Chiapas (Mexico), Guatemala and El Salvador are used to constrain the fault kinematics in the North America (NA), Caribbean (CA) and Cocos (CO) plates triple junction area. The regional GPS velocity field is first analysed in terms of strain partitioning across the major volcano-tectonic structures, using elastic half-space modelling, then inverted through a block model. We show the dominant role of the Motagua Fault with respect to the Polochic Fault in the accommodation of the present-day deformation associated with the NA and CA relative motion. The NA/CA motion decreases from 18-22 mm yr−1 in eastern Guatemala to 14-20 mm yr−1 in central Guatemala (assuming a uniform locking depth of 14-28 km), down to a few millimetres per year in western Guatemala. As a consequence, the western tip of the CA Plate deforms internally, with ≃9 mm yr−1 of east-west extension (≃5 mm yr−1 across the Guatemala city graben alone). Up to 15 mm yr−1 of dextral motion can be accommodated across the volcanic arc in El Salvador and southeastern Guatemala. The arc seems to mark the northern boundary of an independent forearc sliver (AR), pinned to the NA plate. The inversion of the velocity field shows that a four-block (NA, CA, CO and AR) model, that combines relative block rotations with elastic deformation at the block boundaries, can account for most of the GPS observations and constrain the overall kinematics of the active structures. This regional modelling also evidences lateral variations of coupling at the CO subduction interface, with a fairly high-coupling (≃0.6) offshore Chiapas and low-coupling (≃0.25) offshore Guatemala and El Salvador
La longue séquence de Marchésieux: reconstitution de paléoenvironnements marins durant le premier cycle glaciaire de l'hémisphère nord
International audienceA l'échelle des cinq derniers millions d'années, les enregistrements paléoclimatiques restitués par les sédiments océaniques illustrent le contrôle des paramètres orbitaux (précession, obliquité et excentricité) sur le climat global. La tendance au refroidissement qui accompagne la fin du Néogène est ainsi marquée, vers -2,4 Ma, par le développement rapide des calottes de glace de l'hémisphère nord (Shackleton et al., 1984). Alors que l'histoire du climat global restituée par les enregistrements océaniques est sans cesse précisée, les données concernant l'évolution des environnements continentaux et côtiers au cours de ces changements restent essentiellement fragmentaires. Le forage effectué à Marchésieux (Manche; Normandie) a permis de réaliser une étude pluridisciplinaire de la signature de ce premier cycle glaciaire de l'hémisphère nord (Prétiglien). Les premiers résultats stratigraphiques, paléoenvironnementaux (eustatisme, température, paléobathymétrie) sont présentés
Disentangling diverse responses to climate change among global marine ecosystem models
Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models’ drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts
Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean
Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality-controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near-surface maximum rate of 1.80 ± 0.45 µmol kg−1 yr−1. Anthropogenic CO2 accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (δ13CDIC) was also determined and used as an independent test of our method. We calculated a volume-integrated anthropogenic CO2 accumulation rate of 2.8 ± 0.4 mg C m−3 yr−1 along the EEL, which is about double the global mean. The anthropogenic CO2 component accounts for only 31 ± 6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas
Future Aircraft and the Future of Aircraft Noise
In order to cope with increasing air traffic and the requirement to decrease
the overall footprint of the aviation sector - making it more sustainably and acceptable for the whole society - drastic technology improvements are required beside all other measures. This includes also the development of novel aircraft configurations and associated technologies which are anticipated to bring significant improvements for fuel burn, gaseous and noise emissions compared to the current state and the current evolutionary development. Several research projects all over the world
have been investigating specific technologies to address these goals individually, or novel - sometimes also called "disruptive" - aircraft concepts as a whole. The chapter provides a small glimpse on these activities - mainly from a point of view of recent European funded research activities like Horizon2020 projects ARTEM, PARSIFAL, and SENECA being by no-way complete or exhaustive. The focus of this collection is on noise implications of exemplary novel concepts as this is one of the most complicated and least addressed topics in the assessment of aircraft configurations in an early design stage. Beside the boundary layer ingestion concept, the design process for a blended wing body aircraft is described, a box-wing concept is presented and an outlook on emerging supersonic air transport is given
Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change
While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends
Specific genomic aberrations in primary colorectal cancer are associated with liver metastases
Background: Accurate staging of colorectal cancer (CRC) with clinicopathological parameters is important for predicting prognosis and guiding treatment but provides no information about organ site of metastases. Patterns of genomic aberrations in primary colorectal tumors may reveal a chromosomal signature for organ specific metastases. Methods: Array Comparative Genomic Hybridization (aCGH) was employed to asses DNA copy number changes in primary colorectal tumors of three distinctive patient groups. This included formalin-fixed, paraffin-embedded tissue of patients who developed liver metastases (LM; n = 36), metastases (PM; n = 37) and a group that remained metastases-free (M0; n = 25). A novel statistical method for identifying recurrent copy number changes, KC-SMART, was used to find specific locations of genomic aberrations specific for various groups. We created a classifier for organ specific metastases based on the aCGH data using Prediction Analysis for Microarrays (PAM). Results: Specifically in the tumors of primary CRC patients who subsequently developed liver metastasis, KC-SMART analysis identified genomic aberrations on chromosome 20q. LM-PAM, a shrunken centroids classifier for liver metastases occurrence, was able to distinguish the LM group from the other groups (M0&PM) with 80% accuracy (78% sensitivity and 86% specificity). The classification is predominantly based on chromosome 20q aberrations. Conclusion: Liver specific CRC metastases may be predicted with a high accuracy based on specific genomic aberrations in the primary CRC tumor. The ability to predict the site of metastases is important for improvement of personalized patient management.MediamaticsElectrical Engineering, Mathematics and Computer Scienc
Un grand accident actif : la faille de la vallée longitudinale de Taiwan (Taiwan, République de Chine)
International audienc
Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting
International audienceThe present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian Triassic rifting, undergoing later collisional deformation in mid late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affected the sedimentary cover in Triassic Jurassic times with an approximately N S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE SW trend during Jurassic Cretaceous times. The stress state significantly changed to thrust setting, with a NE SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene Miocene times. This compression was then followed by a strike-slip stress state with an approximately N S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectivel
Structure et néotectonique de l'arc hellénique oriental : les îles de Kassos et Karpathos (Dodécanèse, Grèce)
International audienc
- …
