1,047 research outputs found
A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones
Fully-autonomous miniaturized robots (e.g., drones), with artificial
intelligence (AI) based visual navigation capabilities are extremely
challenging drivers of Internet-of-Things edge intelligence capabilities.
Visual navigation based on AI approaches, such as deep neural networks (DNNs)
are becoming pervasive for standard-size drones, but are considered out of
reach for nanodrones with size of a few cm. In this work, we
present the first (to the best of our knowledge) demonstration of a navigation
engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based
visual navigation. To achieve this goal we developed a complete methodology for
parallel execution of complex DNNs directly on-bard of resource-constrained
milliwatt-scale nodes. Our system is based on GAP8, a novel parallel
ultra-low-power computing platform, and a 27 g commercial, open-source
CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the
software mapping techniques that enable the state-of-the-art deep convolutional
neural network presented in [1] to be fully executed on-board within a strict 6
fps real-time constraint with no compromise in terms of flight results, while
all processing is done with only 64 mW on average. Our navigation engine is
flexible and can be used to span a wide performance range: at its peak
performance corner it achieves 18 fps while still consuming on average just
3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication
in the IEEE Internet of Things Journal (IEEE IOTJ
A new paradigm for space astrophysics mission design
Pursuing ground breaking science in a highly cost-constrained environment presents new challenges to the development of future space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s science ambitions requires a new paradigm of system design, development and manufacture. This paper explores the nature of the current paradigm and proposes a series of steps to guide the entire community to a sustainable future
Edge of a Half-Filled Landau Level
We have investigated the electron occupation number of the edge of a quantum
Hall (QH) droplet at using exact diagonalization technique and
composite fermion trial wavefunction. We find that the electron occupation
numbers near the edge obey a scaling behavior. The scaling result indicates the
existence of a well-defined edge corresponding to the radius of a compact
droplet of uniform filling factor 1/2. We find that the occupation number
beyond this edge point is substantial, which is qualitatively different from
the case of odd-denominator QH states. We relate these features to the
different ways in which composite fermions occupy Landau levels for odd and
even denominator states.Comment: To appear in Phys. Rev.
The proinflammatory cytokine interleukin 18 regulates feeding by acting on the bed nucleus of the stria terminalis
The proinflammatory cytokine IL-18 has central anorexigenic effects and was proposed to contribute to loss of appetite observed during sickness. Here we tested in the mouse the hypothesis that IL-18 can decrease food intake by acting on neurons of the bed nucleus of the stria terminalis (BST), a component of extended amygdala recently shown to influence feeding via its projections to the lateral hypothalamus (LH). We found that both subunits of the heterodimeric IL-18 receptor are highly expressed in the BST and that local injection of recombinant IL-18 (50 ng/ml) significantly reduced c-fos activation and food intake for at least 6 h. Electrophysiological experiments performed in BST brain slices demonstrated that IL-18 strongly reduces the excitatory input on BST neurons through a presynaptic mechanism. The effects of IL-18 are cell-specific and were observed in Type III but not in Type I/II neurons. Interestingly, IL-18-sensitve Type III neurons were recorded in the juxtacapsular BST, a region that contains BST-LH projecting neurons. Reducing the excitatory input on Type III GABAergic neurons, IL-18 can increase the firing of glutamatergic LH neurons through a disinhibitory mechanism. Imbalance between excitatory and inhibitory activity in the LH can induce changes in food intake. Effects of IL-18 were mediated by the IL-18R because they were absent in neurons from animals null for IL-18R\u3b1 (Il18ra-/-), which lack functional IL-18 receptors. In conclusion, our data show that IL-18 may inhibit feeding by inhibiting the activity of BST Type III GABAergic neurons
Recommended from our members
Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects.
Polygalacturonase-inhibiting proteins (PGIPs) are extracellular plant inhibitors of fungal endopolygalacturonases (PGs) that belong to the superfamily of Leu-rich repeat proteins. We have characterized the full complement of pgip genes in the bean (Phaseolus vulgaris) genotype BAT93. This comprises four clustered members that span a 50-kb region and, based on their similarity, form two pairs (Pvpgip1/Pvpgip2 and Pvpgip3/Pvpgip4). Characterization of the encoded products revealed both partial redundancy and subfunctionalization against fungal-derived PGs. Notably, the pair PvPGIP3/PvPGIP4 also inhibited PGs of two mirid bugs (Lygus rugulipennis and Adelphocoris lineolatus). Characterization of Pvpgip genes of Pinto bean showed variations limited to single synonymous substitutions or small deletions. A three-amino acid deletion encompassing a residue previously identified as crucial for recognition of PG of Fusarium moniliforme was responsible for the inability of BAT93 PvPGIP2 to inhibit this enzyme. Consistent with the large variations observed in the promoter sequences, reverse transcription-PCR expression analysis revealed that the different family members differentially respond to elicitors, wounding, and salicylic acid. We conclude that both biochemical and regulatory redundancy and subfunctionalization of pgip genes are important for the adaptation of plants to pathogenic fungi and phytophagous insects
GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology
We present first results from the third GRavitational lEnsing Accuracy
Testing (GREAT3) challenge, the third in a sequence of challenges for testing
methods of inferring weak gravitational lensing shear distortions from
simulated galaxy images. GREAT3 was divided into experiments to test three
specific questions, and included simulated space- and ground-based data with
constant or cosmologically-varying shear fields. The simplest (control)
experiment included parametric galaxies with a realistic distribution of
signal-to-noise, size, and ellipticity, and a complex point spread function
(PSF). The other experiments tested the additional impact of realistic galaxy
morphology, multiple exposure imaging, and the uncertainty about a
spatially-varying PSF; the last two questions will be explored in Paper II. The
24 participating teams competed to estimate lensing shears to within systematic
error tolerances for upcoming Stage-IV dark energy surveys, making 1525
submissions overall. GREAT3 saw considerable variety and innovation in the
types of methods applied. Several teams now meet or exceed the targets in many
of the tests conducted (to within the statistical errors). We conclude that the
presence of realistic galaxy morphology in simulations changes shear
calibration biases by per cent for a wide range of methods. Other
effects such as truncation biases due to finite galaxy postage stamps, and the
impact of galaxy type as measured by the S\'{e}rsic index, are quantified for
the first time. Our results generalize previous studies regarding sensitivities
to galaxy size and signal-to-noise, and to PSF properties such as seeing and
defocus. Almost all methods' results support the simple model in which additive
shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to
MNRAS; latest version has minor updates in presentation of 4 figures, no
changes in content or conclusion
Bulk and edge correlations in the compressible half-filled quantum Hall state
We study bulk and edge correlations in the compressible half-filled state,
using a modified version of the plasma analogy. The corresponding plasma has
anomalously weak screening properties, and as a consequence we find that the
correlations along the edge do not decay algebraically as in the Laughlin
(incompressible) case, while the bulk correlations decay in the same way. The
results suggest that due to the strong coupling between charged modes on the
edge and the neutral Fermions in the bulk, reflected by the weak screening in
the plasma analogue, the (attractive) correlation hole is not well defined on
the edge. Hence, the system there can be modeled as a free Fermi gas of {\em
electrons} (with an appropriate boundary condition). We finally comment on a
possible scenario, in which the Laughlin-like dynamical edge correlations may
nevertheless be realized.Comment: package now includes the file epsfig.sty, needed to incorporate
properly the 8 magnificent figure
A Groundbased Imaging Study of Galaxies Causing DLA, subDLA, and LLS Absorption in Quasar Spectra
We present results from a search for galaxies that give rise to damped Lyman
alpha (DLA), subDLA, and Lyman limit system (LLS) absorption at redshifts 0.1
~< z ~< 1 in the spectra of background quasars. The sample was formed from a
larger sample of strong MgII absorbers (W_0^(2796) >= 0.3 A) whose HI column
densities were determined by measuring the Ly-alpha line in HST UV spectra.
Photometric redshifts, galaxy colors, and proximity to the quasar sightline, in
decreasing order of importance, were used to identify galaxies responsible for
the absorption. Our sample includes 80 absorption systems for which the
absorbing galaxies have been identified, of which 54 are presented here for the
first time. The main results of this study are: (i) the surface density of
galaxies falls off exponentially with increasing impact parameter, b, from the
quasar sightline relative to a constant background of galaxies, with an
e-folding length of ~46 kpc. Galaxies with b >~ 100 kpc calculated at the
absorption redshift are statistically consistent with being unrelated to the
absorption system. (ii) log N(HI) is inversely correlated with b at the 3.0
sigma level of significance. DLA galaxies are found systematically closer to
the quasar sightline, by a factor of two, than are galaxies which give rise to
subDLAs or LLSs. The median impact parameter is 17.4 kpc for the DLA galaxy
sample, 33.3 kpc for the subDLA sample, and 36.4 kpc for the LLS sample. (iii)
Absorber galaxy luminosity relative to L*, L/L*, is not significantly
correlated with W_0^(2796), log N(HI), or b. (iv) DLA, subDLA, and LLS galaxies
comprise a mix of spectral types, but are inferred to be predominantly late
type galaxies based on their spectral energy distributions. The implications of
these results are discussed. (Abridged)Comment: Accepted for publication in MNRA
- …
