59 research outputs found
Recommended from our members
Interference-mediated synaptonemal complex formation with embedded crossover designation
Biological systems exhibit complex patterns, at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, designation of crossover recombination sites ("crossover interference"). We present evidence, in the fungus Sordaria macrospora, that crossover interference is part of a broader patterning program that includes synaptonemal complex (SC) nucleation. This program yields relatively evenly-spaced SC nucleation sites; among these, a subset is also crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire lengths of the chromosomes as required for homolog pairing maintenance and interlock sensing while concomitantly embedding crossover interactions within the SC structure as required for both DNA recombination and structural events of chiasma-formation. This pattern can be explained by a threshold-based interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object.Other Research Uni
Systematic Deletion of Homeobox Genes in Podospora anserina Uncovers Their Roles in Shaping the Fruiting Body
Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures
Wood Utilization Is Dependent on Catalase Activities in the Filamentous Fungus Podospora anserina
Catalases are enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. They are implicated in various physiological and pathological conditions but some of their functions remain unclear. In order to decipher the role(s) of catalases during the life cycle of Podospora anserina, we analyzed the role of the four monofunctional catalases and one bifunctional catalase-peroxidase genes present in its genome. The five genes were deleted and the phenotypes of each single and all multiple mutants were investigated. Intriguingly, although the genes are differently expressed during the life cycle, catalase activity is dispensable during both vegetative growth and sexual reproduction in laboratory conditions. Catalases are also not essential for cellulose or fatty acid assimilation. In contrast, they are strictly required for efficient utilization of more complex biomass like wood shavings by allowing growth in the presence of lignin. The secreted CATB and cytosolic CAT2 are the major catalases implicated in peroxide resistance, while CAT2 is the major player during complex biomass assimilation. Our results suggest that P. anserina produces external H2O2 to assimilate complex biomass and that catalases are necessary to protect the cells during this process. In addition, the phenotypes of strains lacking only one catalase gene suggest that a decrease of catalase activity improves the capacity of the fungus to degrade complex biomass
Excited state dynamics of Photoactive Yellow Protein chromophores elucidated by high-resolution spectroscopy and ab initio calculations
We report on experimental high-resolution spectroscopic studies in combination with advanced theoretical calculations that focus on the excited-state dynamics of various forms of the chromophore of the Photoactive Yellow Protein (PYP), and the dependence of these dynamics on conformational and isosteric structure, as well as the biological environment. Three-colour nanosecond multiphoton ionization pump-probe studies confirm and extend previous conclusions that the dominant decay channel of the lowest excited pi pi* state (the so-called V' state) of methyl-4-hydroxycinnamate is picosecond internal conversion to the adiabatically lower n pi* state, and enable us to resolve apparent contradictions with picosecond pump-probe studies. Comparison of multiphoton ionization and laser induced fluorescence excitation spectra leads to the assignment of the hitherto elusive excitation spectrum of the V(pp*) state. Complexation of methyl-4-hydroxycinnamate with water radically changes the excited-state dynamics; internal conversion to the np* state is absent, and bond isomerization channels instead play a prominent role. Excited states of the thio-ester compound, the form in which the chromophore is present in PYP, have till the present study remained out of reach of gas-phase studies. The excitation spectra obtained here show a broad, almost structureless band system, giving evidence for enhanced nonradiative decay channels. The gas-phase results will be discussed in the context of results from ultrafast studies on these two chromophores in solution
Sordaria, a model system to uncover links between meiotic pairing and recombination
International audienceThe mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination
HET-E and HET-D Belong to a New Subfamily of WD40 Proteins Involved in Vegetative Incompatibility Specificity in the Fungus <i>Podospora anserina</i>
Abstract
Vegetative incompatibility, which is very common in filamentous fungi, prevents a viable heterokaryotic cell from being formed by the fusion of filaments from two different wild-type strains. Such incompatibility is always the consequence of at least one genetic difference in specific genes (het genes). In Podospora anserina, alleles of the het-e and het-d loci control heterokaryon viability through genetic interactions with alleles of the unlinked het-c locus. The het-d2Y gene was isolated and shown to have strong similarity with the previously described het-e1A gene. Like the HET-E protein, the HET-D putative protein displayed a GTP-binding domain and seemed to require a minimal number of 11 WD40 repeats to be active in incompatibility. Apart from incompatibility specificity, no other function could be identified by disrupting the het-d gene. Sequence comparison of different het-e alleles suggested that het-e specificity is determined by the sequence of the WD40 repeat domain. In particular, the amino acids present on the upper face of the predicted β-propeller structure defined by this domain may confer the incompatible interaction specificity.</jats:p
Manayzah, early to mid-Holocene occupations in Wādī Ṣanā (Ḥaḍramawt, Yemen)
International audienceDiscovered during the 2004 campaign of the RASA Project in the province of ДaΡramawt, Yemen, Manayzah is an early to midHolocene site exceptional for its deep and well-preserved occupational stratigraphy, an unparalleled corpus of stone tools, numerous animal bones, clearly defined activity and dwelling areas, as well as elements of stone and shell jewellery. Lithic industries are widely diversified with worked obsidian, bifacial arrowheads, and numerous other tool types. The fluting technique appears in stratigraphic contexts and is now dated to the seventh millennium BP by radiocarbon assay on associated organic material.In the 2005 winter season, RASA archaeologists initiated an open-area excavation and added much archaeological data for spatial analysis and lithic studies, which focused on debitage modalities and tool shaping. The study of features (such as hearths, pits, and post holes) promises valuable insight into the social organization of mid-Holocene populations in ДaΡramawt. This prehistoric occupation site is the first of its kind in Yemen in terms of quality, diversity, and quantity of artefacts, and is especially remarkable for the associations of bones and lithics. This new data set offers crucial progress towards redefining the socalled "Neolithic" period in southern Arabia, particularly in terms of economic activities. What follows is a preliminary report on the site, and current research
- …
