49 research outputs found
Novel biodegradable sandwich-structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study
Dave Wei-Chih Chen1,2, Jun-Yi Liao3, Shih-Jung Liu2, Err-Cheng Chan41Department of Orthopedic Surgery, Chang Gung Memorial Hospital, 2Department of Mechanical Engineering, 3Graduate Institute of Medical Mechatronics, 4School of Medical Technology, Chang Gung University, Kwei-San, Tao-Yuan, TaiwanBackground: The purpose of this study was to develop novel sandwich-structured nanofibrous membranes to provide sustained-release delivery of vancomycin, gentamicin, and lidocaine for repair of infected wounds.Methods: To prepare the biodegradable membranes, poly(D, L)-lactide-co-glycolide (PLGA), collagen, and various pharmaceuticals, including vancomycin, gentamicin, and lidocaine, were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into sandwich-structured membranes with PLGA/collagen as the surface layers and PLGA/drugs as the core. An elution method and a high-pressure liquid chromatography assay were used to characterize in vivo and in vitro drug release from the membranes. In addition, repair of infected wounds in rats was studied. Histological examination of epithelialization and granulation at the wound site was also performed.Results: The biodegradable nanofibrous membranes released large amounts of vancomycin and gentamicin (well above the minimum inhibition concentration) and lidocaine in vivo for more than 3 weeks. A bacterial inhibition test was carried out to determine the relative activity of the antibiotics released. The bioactivity ranged from 40% to 100%. The nanofibrous membranes were functionally active in treating infected wounds, and were very effective as accelerators in early-stage wound healing.Conclusion: Using the electrospinning technique, we will be able to manufacture biodegradable, biomimetic, nanofibrous, extracellular membranes for long-term delivery of various drugs.Keywords: nanofibrous, sandwich-structured, drug-eluting membranes, electrospinning, release characteristics, repair, wound infectio
Cytotoxic Effect of Recombinant Mycobacterium tuberculosis CFP-10/ESAT-6 Protein on the Crucial Pathways of WI-38 Cells
To unravel the cytotoxic effect of the recombinant CFP-10/ESAT-6 protein (rCFES) on WI-38 cells, an integrative analysis approach, combining time-course microarray data and annotated pathway databases, was proposed with the emphasis on identifying the potentially crucial pathways. The potentially crucial pathways were selected based on a composite criterion characterizing the average significance and topological properties of important genes. The analysis results suggested that the regulatory effect of rCFES was at least involved in cell proliferation, cell motility, cell survival, and metabolisms of WI-38 cells. The survivability of WI-38 cells, in particular, was significantly decreased to 62% with 12.5 μM rCFES. Furthermore, the focal adhesion pathway was identified as the potentially most-crucial pathway and 58 of 65 important genes in this pathway were downregulated by rCFES treatment. Using qRT-PCR, we have confirmed the changes in the expression levels of LAMA4, PIK3R3, BIRC3, and NFKBIA, suggesting that these proteins may play an essential role in the cytotoxic process in the rCFES-treated WI-38 cells
Purification and Characterization of Neutral Sphingomyelinase from Helicobacter pylori †
ABSTRACT: Phospholipase activities of human gastric bacterium, Helicobacter pylori, are regarded as the pathogenic factors owing to their actions on epithelial cell membranes. In this study, we purified and characterized neutral sphingomyelinase (N-SMase) from the superficial components of H. pylori strains for the first time. N-SMase was purified 2083-fold with an overall recovery of 37%. The purification steps included acid glycine extraction, ammonium sulfate precipitation, CM-Sepharose, Mono-Q, and Sephadex G-75 column chromatography. Approximate molecular mass for the native N-SMase was around 32 kDa. When N-ω-trinitrophenylaminolauryl sphingomyelin (TNPAL-SM) was used as a substrate, the purified enzyme exhibited a K m of 6.7 µM and a V max of 15.6 nmol of TNPAL-sphingosine/h/mg of protein at 37°C in 50 mM phosphate-buffered saline, pH 7.4. N-SMase reaches optimal activity at pH 7.4 and has a pI of 7.15. The enzyme activity is magnesium dependent and specifically hydrolyzed sphingomyelin and phosphatidylethanolamine. The enzyme also exhibits hemolytic activity on human erythrocytes. According to Western blot analysis, a rabbit antiserum against purified N-SMase from H. pylori cross-reacted with SMase from Bacillus cereus. Sera from individuals with H. pylori infection but not uninfected ones recognizing the purified N-SMase indicated that it was produced in vivo. In enzymelinked immunosorbent assays, the purified N-SMase used as an antigen was as effective as crude protein antigens in detecting human antibodies to H. pylori
Efficacy of vancomycin-releasing biodegradable poly(lactide-co-glycolide) antibiotics beads for treatment of experimental bone infection due to Staphylococcus aureus
BACKGROUND: Clinical experience and animal studies have suggested that positron emission tomography (PET) using fluorine-18-labeled fluorodeoxyglucose ((18)F-FDG) may be promising for imaging of bone infections. In this study, we aimed to establish the accuracy of (18)F-FDG PET scanning for monitoring the response to poly(lactide-co-glycolide) (PLGA) vancomycin beads for treatment of bone infection. METHODS: PLGA was mixed with vancomycin and hot-compress molded to form antibiotic beads. In vitro, elution assays and bacterial inhibition tests were employed to characterize the released antibiotics. In vivo, cylindrical cavities were made in six adult male New Zealand white rabbits, and Staphylococcus aureus or saline was injected into the cavity to create a bone infection. After 2 weeks, the infection was confirmed by bacterial cultures, and the defect was filled with PLGA vancomycin beads. The treatment response was monitored by (18)F-FDG PET. RESULTS: The biodegradable beads released high concentrations of vancomycin (well above the breakpoint sensitivity concentration) for treatment of bone infection. In bacterial inhibition tests, the diameter of the sample inhibition zone ranged from 6.5 to 10 mm, which was equivalent to 12.5–100 % relative activity. (18)F-FDG PET results showed that uncomplicated bone healing was associated with a temporary increase in (18)F-FDG uptake at 2 weeks, with return to near baseline at 6 weeks. In the infected animals, localized infection resulted in intense continuous uptake of (18)F-FDG, which was higher than that in uncomplicated healing bones. Bone infection was confirmed with positive bacterial cultures. In vancomycin-treated animals, data showed rapidly decreasing amounts of (18)F-FDG uptake after treatment. CONCLUSIONS: In vitro and in vivo analyses showed that the use of biodegradable PLGA vancomycin beads successfully eradicated S. aureus infection in damaged bone
Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers
Blockade of phospholipid scramblase 1 with its N-terminal domain antibody reduces tumorigenesis of colorectal carcinomas in vitro and in vivo
D-xylose fermentation by Schizosaccharomyces pombe cloned with xylose isomerase gene
Renewable biomass, D-xylose, can be converted to ethanol by microbes which are screened from nature or mutagenesis. An alternative is to develop a genetically modified microorganism which possesses the gene for D-xylose utilization. The plasmid pDB248-XI containing the xylose isomerase gene from Escherichia coli has been cloned to the fission yeast Schizosaccharomyces pombe. A preliminary investigation showed that the modified yeast had the ability to produce ethanol by using D-xylose as substrate. Studies of environmental effects, fermentation limiting factors, and the xylose isomerase gene expression were performed in order to understand the biochemical and physiological characteristics of the modified yeast during D-xylose fermentation. The modified yeast was demonstrated to produce 0.42 g ethanol form 1 g D-xylose under the current situation. However, the studies also indicated that the ethanol yield could be increased through further genetic improvement
