46 research outputs found

    Dynamic characteristics of centrifugal pump induced by fluid and motor excitation forces

    Get PDF
    The combined dynamic characteristics of the centrifugal pump induced by the fluid and motor excitation forces are investigated in this paper. The coupling vibrations of a centrifugal pump during the operation are mainly caused by the fluid excitation and the motor excitation forces. The finite element model was constructed in this paper under the consideration of the fluid excitation which was obtained from the numerical simulation and the motor excitation force which came from the experiments; compared with the experimental results and well agreement, the components of the whole model were validated to be accurate enough for simulation. Applying the approach of the modal dynamics, the dynamic analysis was conducted to study the influence of the flow rate, the blade number, the exit installation angle and the outside diameter of impeller on the responses. The suggested optimal parameters were provided from the perspective of the vibration reduction. The results of the calculation are helpful to the designation and the safe operation of the centrifugal pumps

    3D Numerical Simulation of Effect of Antiangiogenic Factor Angiostatin on Blood Flow and Interstitial Fluid Pressure in the Metastatic Tumor

    Get PDF
    Metastatic tumor blood perfusion and interstitial fluid transport based on 3D microvasculature response to inhibitory effect of angiostatin are investigated in this paper. 3D blood flow、interstitial fluid transport and transvascular flow are described by the extended Poiseuille’s, Darcy’s and Starling’s law, respectively. Numerical solutions reveal that angiostatin can promote improved blood perfusion and decrease elevated interstitial fluid pressure within the metastatic tumor microenvironment. Moreover, angiostatin can increase interstitial convection within the tumor and result in more efficient drug delivery and penetration within the metastatic tumor, which suits well with the experimental observations. Together, our results may provide therapeutic implications for further clinical anti-angiogenic cancer therapy

    Numerical investigation on flow-induced structural vibration and noise in centrifugal pump

    Get PDF
    A full scale structural vibration and noise induced by flow was simulated by a hybrid numerical method. An interior flow field was solved by large eddy simulation firstly. The sliding mesh technique was applied to take into account the impeller-volute interaction. A sensitivity analysis on effects of near-wall grid size and sampling time on amplitude of pressure pulsations was performed to impose appropriate vibration exciting source. Computed modal of pump components was validated by experimental results, before the volute vibration and sound field were simulated using a coupled vibro-acoustic model. The numerical results indicated that the amplitude of pressure fluctuation, especially on those points located at near the volute tongue, strongly depended on near-wall grid size. The dominated frequency of the vibration velocity of volute was also blade-passing frequency (BPF), which was in according with frequency spectral characteristics of unsteady pressure fluctuation. Directivity distribution of radiation acoustic field excited by volute vibration was typical dipoles. This study shows that it is feasible to use the hybrid numerical method to evaluate the flow-induced vibration and noise generated in centrifugal pump

    Clinical observation on aplastic anemia treated by spatholobus suberectus composita

    Full text link

    Numerical Study on the Influence of Drift Angle on Wave Properties in a Two-Layer Flow

    No full text
    This study examines the influence of drift angle on the wave and flow field generated by a submarine navigating through a density-stratified fluid. Employing a numerical methodology, this research computed the viscous flow field around the SUBOFF bare hull under conditions of oblique shipping maneuvers. The analytical framework relies on the Reynolds-Averaged Navier–Stokes (RANS) equations, supplemented by the Re-Normalization Group (RNG) k-ε turbulence model and the Volume of Fluid (VOF) method. The initial phases of this study involved verifying grid convergence and the accuracy of the numerical methods used. Subsequently, numerical simulations were performed across a spectrum of drift angles while maintaining a fixed Froude number of Fn = 0.5, with submergence depths set at 1.1 D and 2.0 D. The analysis focused on the wave profiles at both the free surface and the internal surface. The results indicate that the presence of a drift angle produces significant alterations in the characteristics of the free surface and internal surface when compared with straight-ahead motion. Specifically, the asymmetry in the flow field is enhanced, and the variability in the roughness of the free surface is pronounced
    corecore