187 research outputs found
Fair Factorizations of the Complete Multipartite Graphs and Related Edge-colorings
In this dissertation, first the technique of vertex amalgamations is used to extend known results on graph decompositions, and in particular on decompositions of the complete multipartite graph K(n,p) with p parts, each of which has n vertices. The decompositions focus on hamilton cycles and 1-factors that satisfy certain fairness notions, as well as frame versions of these results where each color class (as defined by the decompositions) spans all vertices except for those in one part. Second, some edge-coloring results are proved, extending theorems in the literature on edge-colorings with different fairness properties. Finally, a related new topic is introduced, focusing on equalizing the number of vertices in each color class of an edge-coloring
Proxy Molecular Diagnosis from Whole-Exome Sequencing Reveals Papillon-Lefevre Syndrome Caused by a Missense Mutation in CTSC
Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci
The Y Chromosome: A Complex Locus for Genetic Analyses of Complex Human Traits.
The Human Y chromosome (ChrY) has been demonstrated to be a powerful tool for phylogenetics, population genetics, genetic genealogy and forensics. However, the importance of ChrY genetic variation in relation to human complex traits is less clear. In this review, we summarise existing evidence about the inherent complexities of ChrY variation and their use in association studies of human complex traits. We present and discuss the specific particularities of ChrY genetic variation, including Y chromosomal haplogroups, that need to be considered in the design and interpretation of genetic epidemiological studies involving ChrY
LD Hub:a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis
Motivation: LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. Results: In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies
LD Hub:a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis
Motivation: LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. Results: In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies. Availability and implementation: The web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/<br/
Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.
Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries
Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function–associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD
COVID-19 and climatic factors: A global analysis.
BACKGROUND: It is unknown if COVID-19 will exhibit seasonal pattern as other diseases e.g., seasonal influenza. Similarly, some environmental factors (e.g., temperature, humidity) have been shown to be associated with transmission of SARS-CoV and MERS-CoV, but global data on their association with COVID-19 are scarce. OBJECTIVE: To examine the association between climatic factors and COVID-19. METHODS: We used multilevel mixed-effects (two-level random-intercepts) negative binomial regression models to examine the association between 7- and 14-day-lagged temperature, humidity (relative and absolute), wind speed and UV index and COVID-19 cases, adjusting for Gross Domestic Products, Global Health Security Index, cloud cover (%), precipitation (mm), sea-level air-pressure (mb), and daytime length. The effects estimates are reported as adjusted rate ratio (aRR) and their corresponding 95% confidence interval (CI). RESULTS: Data from 206 countries/regions (until April 20, 2020) with ≥100 reported cases showed no association between COVID-19 cases and 7-day-lagged temperature, relative humidity, UV index, and wind speed, after adjusting for potential confounders, but a positive association with 14-day-lagged temperature and a negative association with 14-day-lagged wind speed. Compared to an absolute humidity of 10 g/m3 did not have a significant effect. These findings were robust in the 14-day-lagged analysis. CONCLUSION: Our results of higher COVID-19 cases (through April 20) at absolute humidity of 5-10 g/m3 may be suggestive of a 'sweet point' for viral transmission, however only controlled laboratory experiments can decisively prove it
- …
