86 research outputs found

    A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests

    Get PDF
    Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary – albeit often ineffective – treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.Stanley Medical Research InstituteNational Institutes of Health (U.S.) (R01DA028301)National Institutes of Health (U.S.) (R01DA030321

    HDAC6 Regulates Glucocorticoid Receptor Signaling in Serotonin Pathways with Critical Impact on Stress Resilience

    Get PDF
    Genetic variations in certain components of the glucocorticoid receptor (GR) chaperone complex have been associated with the development of stress-related affective disorders and individual variability in therapeutic responses to antidepressants. Mechanisms that link GR chaperoning and stress susceptibility are not well understood. Here, we show that the effects of glucocorticoid hormones on socioaffective behaviors are critically regulated via reversible acetylation of Hsp90, a key component of the GR chaperone complex. We provide pharmacological and genetic evidence indicating that the cytoplasmic lysine deacetylase HDAC6 controls Hsp90 acetylation in the brain, and thereby modulates Hsp90–GR protein–protein interactions, as well as hormone- and stress-induced GR translocation, with a critical impact on GR downstream signaling and behavior. Pet1-Cre-driven deletion of HDAC6 in serotonin neurons, the densest HDAC6-expressing cell group in the mouse brain, dramatically reduced acute anxiogenic effects of the glucocorticoid hormone corticosterone in the open-field, elevated plus maze, and social interaction tests. Serotonin-selective depletion of HDAC6 also blocked the expression of social avoidance in mice exposed to chronic social defeat and concurrently prevented the electrophysiological and morphological changes induced, in serotonin neurons, by this murine model of traumatic stress. Together, these results identify HDAC6 inhibition as a potential new strategy for proresilience and antidepressant interventions through regulation of the Hsp90–GR heterocomplex and focal prevention of GR signaling in serotonin pathways. Our data thus uncover an alternate mechanism by which pan-HDAC inhibitors may regulate stress-related behaviors independently of their action on histones

    Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology

    Get PDF
    Imbalance of neuronal proteostasis associated with misfolding and aggregation of Tau protein is a common neurodegenerative feature in Alzheimer's disease (AD) and other Tauopathies. Consistent with suggestions that lifetime stress may be an important AD precipitating factor, we previously reported that environmental stress and high glucocorticoid (GC) levels induce accumulation of aggregated Tau; however, the molecular mechanisms for such process remain unclear. Herein, we monitor a novel interplay between RNA-binding proteins (RBPs) and autophagic machinery in the underlying mechanisms through which chronic stress and high GC levels impact on Tau proteostasis precipitating Tau aggregation. Using molecular, pharmacological and behavioral analysis, we demonstrate that chronic stress and high GC trigger mTOR-dependent inhibition of autophagy, leading to accumulation of Tau aggregates and cell death in P301L-Tau expressing mice and cells. In parallel, we found that environmental stress and GC disturb cellular homeostasis and trigger the insoluble accumulation of different RBPs, such as PABP, G3BP1, TIA-1, and FUS, shown to form stress granules (SGs) and Tau aggregation. Interestingly, an mTOR-driven pharmacological stimulation of autophagy attenuates the GC-driven accumulation of Tau and SG-related proteins as well as the related cell death, suggesting a critical interface between autophagy and the response of the SG-related protein in the neurodegenerative potential of chronic stress and GC. These studies provide novel insights into the RNA-protein intracellular signaling regulating the precipitating role of environmental stress and GC on Tau-driven brain pathology.We would like to thank Professor Juergen Gotz, (University of Queensland, Australia) for the kind offer of eGFP-P301LTau SH-SY5Y cells and Dr. Bruno Almeida for his technical assistance. J.M.S. was granted with a PhD fellowship (SRFH/BD/88932/2012) by Portuguese Foundation for Science & Technology (FCT); I.S. is holder of FCT Investigator grants (IF/01799/2013), C.D. is a recipient of PhD fellowship of PHDoc program and co-tutelle PhD student of UMinho-UPMC universities. This work was funded by FCT research grants "PTDC/SAU-NMC/113934/2009" (I.S.), the Portuguese North Regional Operational Program (ON. 2) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER) as well as the Project Estrategico co-funded by FCT (PEst-C/SAU/LA0026/2013) and the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) as well as the project NORTE-01-0145-FEDER000013, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). In addition, this work was partly funded by Canon Foundation in Europe. This work has been also funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145FEDER-007038. This study was also supported to BW by grants from NIH (AG050471, NS089544, and ES020395), the BrightFocus Foundation, the Alzheimer Association and the Cure Alzeimer Foundation. Human brain tissue was generously provided by the National Institute of Aging Boston University AD Center (P30AG13846).info:eu-repo/semantics/publishedVersio

    Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains

    Full text link

    Anti-amnesic and neuroprotective potentials of the mixed muscarinic receptor/sigma<sub>1</sub> (σ<sub>1</sub>) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative

    Full text link
    Tetrahydro-N, N-dimethyl-2, 2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73) binds to muscarinic acetylcholine and sigma1 (σ1) receptors with affinities in the low micromolar range. We characterized its anti-amnesic and neuroprotective potentials in pharmacological and pathological amnesia models. Spatial working memory was evaluated using spontaneous alternation in the Y-maze and non-spatial memory using passive avoidance procedures. ANAVEX2-73 (0.01–3.0 mg/kg i.p.) alleviated the scopolamine- and dizocilpine-induced learning impairments. ANAVEX2-73 (300 µg/kg) also reversed the learning deficits in mice injected with Aβ25-35 peptide, a non-transgenic Alzheimer’s disease model. When the drug was injected simultaneously with Aβ25-35, 7 days before the tests, it blocked the appearance of learning impairments. This protective activity was confirmed since ANAVEX2-73 blocked the Aβ25-35-induced oxidative stress in the hippocampus. This effect was differentially sensitive to the muscarinic receptor antagonist scopolamine or the σ1 protein antagonist BD1047, confirming the mixed muscarinic/σ1 pharmacological action. Finally, its unique demethyl metabolite, ANAVEX19-144, was also effective and ANAVEX2-73 presented a longer duration of action, effective 12 h before Aβ25-35, than its related compound ANAVEX1-41. The neuroprotective activity of ANAVEX2-73, its mixed cholinergic/σ1 activity, its low active dose range and its long duration of action together reinforce its therapeutic potential in Alzheimer’s disease. </jats:p
    corecore