40 research outputs found
Identification of a mitotic recombination hotspot on chromosome III of the asexual fungus Aspergillus niger and its possible correlation elevated basal transcription
Genetic recombination is an important tool in strain breeding in many organisms. We studied the possibilities of mitotic recombination in strain breeding of the asexual fungus Aspergillus niger. By identifying genes that complemented mapped auxotrophic mutations, the physical map was compared to the genetic map of chromosome III using the genome sequence. In a program to construct a chromosome III-specific marker strain by selecting mitotic crossing-over in diploids, a mitotic recombination hotspot was identified. Analysis of the mitotic recombination hotspot revealed some physical features, elevated basal transcription and a possible correlation with purine stretches
The Pochonia chlamydosporia Serine Protease Gene vcp1 Is Subject to Regulation by Carbon, Nitrogen and pH: Implications for Nematode Biocontrol
The alkaline serine protease VCP1 of the fungus Pochonia chlamydosporia belongs to a family of subtilisin-like enzymes that are involved in infection of nematode and insect hosts. It is involved early in the infection process, removing the outer proteinaceous vitelline membrane of nematode eggs. Little is known about the regulation of this gene, even though an understanding of how nutrients and other factors affect its expression is critical for ensuring its efficacy as a biocontrol agent. This paper provides new information on the regulation of vcp1 expression. Sequence analysis of the upstream regulatory region of this gene in 30 isolates revealed that it was highly conserved and contained sequence motifs characteristic of genes that are subject to carbon, nitrogen and pH-regulation. Expression studies, monitoring enzyme activity and mRNA, confirmed that these factors affect VCP1 production. As expected, glucose reduced VCP1 expression and for a few hours so did ammonium chloride. Surprisingly, however, by 24 h VCP1 levels were increased in the presence of ammonium chloride for most isolates. Ambient pH also regulated VCP1 expression, with most isolates producing more VCP1 under alkaline conditions. There were some differences in the response of one isolate with a distinctive upstream sequence including a variant regulatory-motif profile. Cryo-scanning electron microscopy studies indicated that the presence of nematode eggs stimulates VCP1 production by P. chlamydosporia, but only where the two are in close contact. Overall, the results indicate that readily-metabolisable carbon sources and unfavourable pH in the rhizosphere/egg-mass environment may compromise nematode parasitism by P. chlamydosporia. However, contrary to previous indications using other nematophagous and entomopathogenic fungi, ammonium nitrate (e.g. from fertilizers) may enhance biocontrol potential in some circumstances
Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein
International audienceThe Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC(72) to PacC(27) via PacC(53). Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid-expressed palF, specifying the Pal pathway arrestin, probably by PacC(27) and/or PacC(53), prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC trans-alleles show that pacC preferential alkaline-expression results from derepression by depletion of the acid-prevalent PacC(72) form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC(27) formed by pH-independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino-terminal coiled-coil and a carboxy-terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1-like transposon
On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction
In response to alkaline ambient pH, the Aspergillus nidulans PacC transcription factor mediating pH regulation of gene expression is activated by proteolytic removal of a negative-acting C–terminal domain. We demonstrate interactions involving the ∼150 C–terminal PacC residues and two regions located immediately downstream of the DNA binding domain. Our data indicate two full-length PacC conformations whose relative amounts depend upon ambient pH: one ‘open’ and accessible for processing, the other ‘closed’ and inaccessible. The location of essential determinants for proteolytic processing within the two more upstream interacting regions probably explains why the interactions prevent processing, whereas the direct involvement of the C–terminal region in processing-preventing interactions explains why C–terminal truncating mutations result in alkalinity mimicry and pH-independent processing. A mutant PacC deficient in pH signal response and consequent processing behaves as though locked in the ‘closed’ form. Single-residue substitutions, obtained as mutations bypassing the need for pH signal transduction, identify crucial residues in each of the three interactive regions and overcome the processing deficiency in the ‘permanently closed’ mutant
