51 research outputs found

    Fine Tuning in General Gauge Mediation

    Get PDF
    We study the fine-tuning problem in the context of general gauge mediation. Numerical analyses toward for relaxing fine-tuning are presented. We analyse the problem in typical three cases of the messenger scale, that is, GUT (2×10162\times10^{16} GeV), intermediate (101010^{10} GeV), and relatively low energy (10610^6 GeV) scales. In each messenger scale, the parameter space reducing the degree of tuning as around 10% is found. Certain ratios among gluino mass, wino mass and soft scalar masses are favorable. It is shown that the favorable region becomes narrow as the messenger scale becomes lower, and tachyonic initial conditions of stop masses at the messenger scale are favored to relax the fine-tuning problem for the relatively low energy messenger scale. Our spectra would also be important from the viewpoint of the μB\mu-B problem.Comment: 22 pages, 16 figures, comment adde

    SUSY, the Third Generation and the LHC

    Full text link
    We develop a bottom-up approach to studying SUSY with light stops and sbottoms, but with other squarks and sleptons heavy and beyond reach of the LHC. We discuss the range of squark, gaugino and Higgsino masses for which the electroweak scale is radiatively stable over the "little hierarchy" below ~ 10 TeV. We review and expand on indirect constraints on this scenario, in particular from flavor and CP tests. We emphasize that in this context, R-parity violation is very well motivated. The phenomenological differences between Majorana and Dirac gauginos are also discussed. Finally, we focus on the light subsystem of stops, sbottom and neutralino with R-parity, in order to probe the current collider bounds. We find that 1/fb LHC bounds are mild and large parts of the motivated parameter space remain open, while the 10/fb data can be much more decisive.Comment: 42 pages, 8 figures, 1 table. V2: minor corrections, references adde

    A microscopic theory of gauge mediation

    Get PDF
    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.Comment: 24 pages, 2 figures, accepted to JHEP for publicatio

    Spread Supersymmetry

    Full text link
    In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan and environmental constraints on the dark matter density may exclude a large range of \tilde{m} from the reheating temperature after inflation down to values that yield a LSP mass of order a TeV. After selection effects, the distribution for \tilde{m} may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP lighter than the corresponding value for single-component LSP dark matter. If SUSY breaking is mediated to the SM sector at order X^* X, only squarks, sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed by a further loop factor. This Spread SUSY spectrum has two versions; the Higgsino masses are generated in one from supergravity giving a wino LSP and in the other radiatively giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is as in minimal SUSY theories. If SUSY breaking is mediated at order X, a much less hierarchical spectrum results---similar to that of the MSSM, but with the superpartner masses 1--2 orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure

    Yukawa Unification and the Superpartner Mass Scale

    Full text link
    Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent LHC constraints, but natural electroweak symmetry breaking still remains the most powerful motivation for superpartner masses within experimental reach. If naturalness is the wrong criterion then what determines the mass scale of the superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2) dark matter, and (3) precision b-tau Yukawa unification. We show that for an LSP that is a bino-Higgsino admixture, these three requirements lead to an upper-bound on the stop and sbottom masses in the several TeV regime because the threshold correction to the bottom mass at the superpartner scale is required to have a particular size. For tan beta about 50, which is needed for t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the opposite sign of the gluino mass, as is favored by renormalization group scaling. For lower values of tan beta, the top and bottom squarks must be even lighter. Yukawa unification plus dark matter implies that superpartners are likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of any considerations of naturalness. We present a model-independent, bottom-up analysis of the SUSY parameter space that is simultaneously consistent with Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark matter phenomenology that accompanies this Yukawa unification. A large portion of the parameter space predicts that the branching fraction for B_s to mu^+ mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure

    Direct Mediation and Metastable Supersymmetry Breaking for SO(10)

    Full text link
    We examine a metastable N=1\mathcal{N}=1 Macroscopic SO(N) SQCD model of Intriligator, Seiberg and Shih (ISS). We introduce various baryon and meson deformations, including multitrace operators and explore embedding an SO(10) parent of the standard model into two weakly gauged flavour sectors. Direct fundamental messengers and the symmetric pseudo-modulus messenger mediate SUSY breaking to the MSSM. Gaugino and sfermion masses are computed and compared for each deformation type. We also explore reducing the rank of the magnetic quark matrix of the ISS model and find an additional fundamental messenger.Comment: 43 pages, Latex. Version to appear in JHEP

    Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector

    Full text link
    We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications, results unchanged

    Flavor Mediation Delivers Natural SUSY

    Get PDF
    If supersymmetry (SUSY) solves the hierarchy problem, then naturalness considerations coupled with recent LHC bounds require non-trivial superpartner flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy between scalars of the third and first two generations as well as degeneracy (or alignment) among the first two generations. In this work, we show how this specific beyond the standard model (SM) flavor structure can be tied directly to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3) flavor symmetry, broken only by Yukawa couplings. By gauging this flavor symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via (Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum. Third-generation scalar masses are suppressed due to the dominant breaking of the flavor gauge symmetry in the top direction. More subtly, the first-two-generation scalars remain highly degenerate due to a custodial U(2) symmetry, where the SU(2) factor arises because SU(3) is rank two. This custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling unification predictions are preserved, since no new charged matter is introduced, the SM gauge structure is unaltered, and the flavor symmetry treats all matter multiplets equally. Moreover, the uniqueness of the anomaly-free SU(3) flavor group makes possible a number of concrete predictions for the superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to flavor constraints and a little discussion adde

    Solitonic supersymmetry restoration

    Full text link
    Q-balls are a possible feature of any model with a conserved, global U(1) symmetry and no massless, charged scalars. It is shown that for a broad class of models of metastable supersymmetry breaking they are extremely influential on the vacuum lifetime and make seemingly viable vacua catastrophically short lived. A net charge asymmetry is not required as there is often a significant range of parameter space where statistical fluctuations alone are sufficient. This effect is examined for two supersymmetry breaking scenarios. It is found that models of minimal gauge mediation (which necessarily have a messenger number U(1)) undergo a rapid, supersymmetry restoring phase transition unless the messenger mass is greater than 10^8 GeV. Similarly the ISS model, in the context of direct mediation, quickly decays unless the perturbative superpotential coupling is greater than the Standard Model gauge couplings.Comment: 17 pages, 3 figures, minor comments added, accepted for publication in JHE

    Supersymmetry with Light Stops

    Full text link
    Recent LHC data, together with the electroweak naturalness argument, suggest that the top squarks may be significantly lighter than the other sfermions. We present supersymmetric models in which such a split spectrum is obtained through "geometries": being "close to" electroweak symmetry breaking implies being "away from" supersymmetry breaking, and vice versa. In particular, we present models in 5D warped spacetime, in which supersymmetry breaking and Higgs fields are located on the ultraviolet and infrared branes, respectively, and the top multiplets are localized to the infrared brane. The hierarchy of the Yukawa matrices can be obtained while keeping near flavor degeneracy between the first two generation sfermions, avoiding stringent constraints from flavor and CP violation. Through the AdS/CFT correspondence, the models can be interpreted as purely 4D theories in which the top and Higgs multiplets are composites of some strongly interacting sector exhibiting nontrivial dynamics at a low energy. Because of the compositeness of the Higgs and top multiplets, Landau pole constraints for the Higgs and top couplings apply only up to the dynamical scale, allowing for a relatively heavy Higgs boson, including m_h = 125 GeV as suggested by the recent LHC data. We analyze electroweak symmetry breaking for a well-motivated subset of these models, and find that fine-tuning in electroweak symmetry breaking is indeed ameliorated. We also discuss a flat space realization of the scenario in which supersymmetry is broken by boundary conditions, with the top multiplets localized to a brane while other matter multiplets delocalized in the bulk.Comment: 27 pages, 7 figure
    corecore