51 research outputs found
Fine Tuning in General Gauge Mediation
We study the fine-tuning problem in the context of general gauge mediation.
Numerical analyses toward for relaxing fine-tuning are presented. We analyse
the problem in typical three cases of the messenger scale, that is, GUT
( GeV), intermediate ( GeV), and relatively low energy
( GeV) scales. In each messenger scale, the parameter space reducing the
degree of tuning as around 10% is found. Certain ratios among gluino mass, wino
mass and soft scalar masses are favorable. It is shown that the favorable
region becomes narrow as the messenger scale becomes lower, and tachyonic
initial conditions of stop masses at the messenger scale are favored to relax
the fine-tuning problem for the relatively low energy messenger scale. Our
spectra would also be important from the viewpoint of the problem.Comment: 22 pages, 16 figures, comment adde
SUSY, the Third Generation and the LHC
We develop a bottom-up approach to studying SUSY with light stops and
sbottoms, but with other squarks and sleptons heavy and beyond reach of the
LHC. We discuss the range of squark, gaugino and Higgsino masses for which the
electroweak scale is radiatively stable over the "little hierarchy" below ~ 10
TeV. We review and expand on indirect constraints on this scenario, in
particular from flavor and CP tests. We emphasize that in this context,
R-parity violation is very well motivated. The phenomenological differences
between Majorana and Dirac gauginos are also discussed. Finally, we focus on
the light subsystem of stops, sbottom and neutralino with R-parity, in order to
probe the current collider bounds. We find that 1/fb LHC bounds are mild and
large parts of the motivated parameter space remain open, while the 10/fb data
can be much more decisive.Comment: 42 pages, 8 figures, 1 table. V2: minor corrections, references adde
A microscopic theory of gauge mediation
We construct models of indirect gauge mediation where the dynamics
responsible for breaking supersymmetry simultaneously generates a weakly
coupled subsector of messengers. This provides a microscopic realization of
messenger gauge mediation where the messenger and hidden sector fields are
unified into a single sector. The UV theory is SQCD with massless and massive
quarks plus singlets, and at low energies it flows to a weakly coupled quiver
gauge theory. One node provides the primary source of supersymmetry breaking,
which is then transmitted to the node giving rise to the messenger fields.
These models break R-symmetry spontaneously, produce realistic gaugino and
sfermion masses, and give a heavy gravitino.Comment: 24 pages, 2 figures, accepted to JHEP for publicatio
Spread Supersymmetry
In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan
and environmental constraints on the dark matter density may exclude a large
range of \tilde{m} from the reheating temperature after inflation down to
values that yield a LSP mass of order a TeV. After selection effects, the
distribution for \tilde{m} may prefer larger values. A single environmental
constraint from dark matter can then lead to multi-component dark matter,
including both axions and the LSP, giving a TeV-scale LSP lighter than the
corresponding value for single-component LSP dark matter.
If SUSY breaking is mediated to the SM sector at order X^* X, only squarks,
sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino
mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed
by a further loop factor. This Spread SUSY spectrum has two versions; the
Higgsino masses are generated in one from supergravity giving a wino LSP and in
the other radiatively giving a Higgsino LSP. The environmental restriction on
dark matter fixes the LSP mass to the TeV domain, so that the squark and
slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study
the spectrum, dark matter and collider signals of these two versions of Spread
SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in
cosmic rays arise from dark matter annihilations in the halo; exotic short
charged tracks occur at the LHC, at least for the wino LSP; and there are the
eventual possibilities of direct detection of dark matter and detailed
exploration of the TeV-scale states at a future linear collider. Gauge coupling
unification is as in minimal SUSY theories.
If SUSY breaking is mediated at order X, a much less hierarchical spectrum
results---similar to that of the MSSM, but with the superpartner masses 1--2
orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure
Yukawa Unification and the Superpartner Mass Scale
Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent
LHC constraints, but natural electroweak symmetry breaking still remains the
most powerful motivation for superpartner masses within experimental reach. If
naturalness is the wrong criterion then what determines the mass scale of the
superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2)
dark matter, and (3) precision b-tau Yukawa unification. We show that for an
LSP that is a bino-Higgsino admixture, these three requirements lead to an
upper-bound on the stop and sbottom masses in the several TeV regime because
the threshold correction to the bottom mass at the superpartner scale is
required to have a particular size. For tan beta about 50, which is needed for
t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the
opposite sign of the gluino mass, as is favored by renormalization group
scaling. For lower values of tan beta, the top and bottom squarks must be even
lighter. Yukawa unification plus dark matter implies that superpartners are
likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of
any considerations of naturalness. We present a model-independent, bottom-up
analysis of the SUSY parameter space that is simultaneously consistent with
Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark
matter phenomenology that accompanies this Yukawa unification. A large portion
of the parameter space predicts that the branching fraction for B_s to mu^+
mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure
Direct Mediation and Metastable Supersymmetry Breaking for SO(10)
We examine a metastable Macroscopic SO(N) SQCD model of
Intriligator, Seiberg and Shih (ISS). We introduce various baryon and meson
deformations, including multitrace operators and explore embedding an SO(10)
parent of the standard model into two weakly gauged flavour sectors. Direct
fundamental messengers and the symmetric pseudo-modulus messenger mediate SUSY
breaking to the MSSM. Gaugino and sfermion masses are computed and compared for
each deformation type. We also explore reducing the rank of the magnetic quark
matrix of the ISS model and find an additional fundamental messenger.Comment: 43 pages, Latex. Version to appear in JHEP
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
Flavor Mediation Delivers Natural SUSY
If supersymmetry (SUSY) solves the hierarchy problem, then naturalness
considerations coupled with recent LHC bounds require non-trivial superpartner
flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy
between scalars of the third and first two generations as well as degeneracy
(or alignment) among the first two generations. In this work, we show how this
specific beyond the standard model (SM) flavor structure can be tied directly
to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3)
flavor symmetry, broken only by Yukawa couplings. By gauging this flavor
symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via
(Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum.
Third-generation scalar masses are suppressed due to the dominant breaking of
the flavor gauge symmetry in the top direction. More subtly, the
first-two-generation scalars remain highly degenerate due to a custodial U(2)
symmetry, where the SU(2) factor arises because SU(3) is rank two. This
custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling
unification predictions are preserved, since no new charged matter is
introduced, the SM gauge structure is unaltered, and the flavor symmetry treats
all matter multiplets equally. Moreover, the uniqueness of the anomaly-free
SU(3) flavor group makes possible a number of concrete predictions for the
superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to
flavor constraints and a little discussion adde
Solitonic supersymmetry restoration
Q-balls are a possible feature of any model with a conserved, global U(1)
symmetry and no massless, charged scalars. It is shown that for a broad class
of models of metastable supersymmetry breaking they are extremely influential
on the vacuum lifetime and make seemingly viable vacua catastrophically short
lived. A net charge asymmetry is not required as there is often a significant
range of parameter space where statistical fluctuations alone are sufficient.
This effect is examined for two supersymmetry breaking scenarios. It is found
that models of minimal gauge mediation (which necessarily have a messenger
number U(1)) undergo a rapid, supersymmetry restoring phase transition unless
the messenger mass is greater than 10^8 GeV. Similarly the ISS model, in the
context of direct mediation, quickly decays unless the perturbative
superpotential coupling is greater than the Standard Model gauge couplings.Comment: 17 pages, 3 figures, minor comments added, accepted for publication
in JHE
Supersymmetry with Light Stops
Recent LHC data, together with the electroweak naturalness argument, suggest
that the top squarks may be significantly lighter than the other sfermions. We
present supersymmetric models in which such a split spectrum is obtained
through "geometries": being "close to" electroweak symmetry breaking implies
being "away from" supersymmetry breaking, and vice versa. In particular, we
present models in 5D warped spacetime, in which supersymmetry breaking and
Higgs fields are located on the ultraviolet and infrared branes, respectively,
and the top multiplets are localized to the infrared brane. The hierarchy of
the Yukawa matrices can be obtained while keeping near flavor degeneracy
between the first two generation sfermions, avoiding stringent constraints from
flavor and CP violation. Through the AdS/CFT correspondence, the models can be
interpreted as purely 4D theories in which the top and Higgs multiplets are
composites of some strongly interacting sector exhibiting nontrivial dynamics
at a low energy. Because of the compositeness of the Higgs and top multiplets,
Landau pole constraints for the Higgs and top couplings apply only up to the
dynamical scale, allowing for a relatively heavy Higgs boson, including m_h =
125 GeV as suggested by the recent LHC data. We analyze electroweak symmetry
breaking for a well-motivated subset of these models, and find that fine-tuning
in electroweak symmetry breaking is indeed ameliorated. We also discuss a flat
space realization of the scenario in which supersymmetry is broken by boundary
conditions, with the top multiplets localized to a brane while other matter
multiplets delocalized in the bulk.Comment: 27 pages, 7 figure
- …
